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Abstract

The static second hyperpolarizability is derived from the space-fractional Schrödinger
equation in the particle-centric view. The Thomas-Reiche-Kuhn sum rule ma-
trix elements and the three-level ansatz determines the maximum second hy-
perpolarizability for a space-fractional quantum system. The total oscillator
strength is shown to decrease as the space-fractional parameter α decreases,
which reduces the optical response of a quantum system in the presence of an
external field. This damped response is caused by the wavefunction depen-
dent position and momentum commutation relation. Although the maximum
response is damped, we show that the one-dimensional quantum harmonic oscil-
lator is no longer a linear system for α 6= 1, where the second hyperpolarizability
becomes negative before ultimately damping to zero at the lower fractional limit
of α→ 1/2.

Keywords: fractional Schrödinger equation, nonlinear optics, second
hyperpolarizability, fundamental limit, fractional commutation relations,
fractional sum rule
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1. Introduction

Kuzyk first discovered limits to the nonlinear optical responses of non-
relativistic systems with position dependent potentials.[1] These limits are much
greater than the largest responses obtained through experimentation.[2] An-
other gap has also been observed between the fundamental limits and the best
optimized pseudo-potentials.[3, 4, 5] These reported gaps may be better un-
derstood by investigating more generalized quantum mechanical theories. The
relativistically corrected Thomas-Reiche-Kuhn (TRK) sum rule [7, 8] led to
smaller intrinsic nonlinearities as compared to those calculated in the purely
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non-relativistic regime, where this decrease in the response is caused by higher-
order momentum operators appearing from block diagonalization of the Dirac
equation.[9] The first hyperpolarizability of systems described by the space-
fractional Schrödinger equation has also been investigated.[10]

Laskin discovered the space-fractional Schrödinger equation by generaliz-
ing the path integral formulation using a Lévy-type path.[11] Laskin further
investigated the space-fractional Schrödinger equation, where he formulated a
fractional generalization of the Heisenberg uncertainty principal, proved the
Hermiticity of the fractional Hamiltonian operator, and determined the energy
spectrum of space-fractional, hydrogen-like atoms.[12, 13] The kinetic energy in
the space-fractional Schrödinger equation depends on fractional momentum op-
erators, which results in a fractional derivative. The Riesz fractional derivative
[14]

(
−∇2

)α
appears in the space-fractional Schrödinger equation.

In this paper, we derive a sum-over-states expression for the second hyperpo-
larizability. The limit to the second hyperpolarizability from the space-fractional
Schrödinger equation depends on the fractional parameter α, therefore we define
an apparent intrinsic second hyperpolarizability to make comparisons between
the space-fractional Schrödinger equation and the standard Schrödinger equa-
tion. Although the limit to the second hyperpolarizability decreases when α
is reduced below unity, we show that some potentials with a small nonlinear
optical response can gain a larger response magnitude. This is explicitly shown
for the quantum harmonic oscillator, which has a non-zero second hyperpolar-
izability determined from the fractional Schrödinger equation within the Lévy
index 1 < 2α ≤ 2.

2. Theory

The time-independent space-fractional Schrödinger equation with a momen-
tum operator given by the Riesz fractional derivative for a single particle system
is given by

Ĥαψ = Eψ, (1)

where Ĥα is the space-fractional Hamiltonian with fractional parameter 1/2 <
α ≤ 1, E is the energy, and ψ is the wavefunction. The Hamiltonian considered
in this paper has a kinetic energy described by the fractional momentum opera-
tor and a spatially dependent potential. The one-dimensional, space-fractional
Hamiltonian may be written as

Ĥα =
p̂2

2m
+ V (x̂) . (2)

where m is the rest mass and V (x̂) is the potential energy.
Respectively, the position and momentum operators are given by

x̂ =

(
~
mc

)1−α

|x|α sign (x) (3)
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and

p̂ = −imc
(

~
mc

)α
∂α

∂xα
. (4)

The operator ∂α/∂xα in Eq. 4 is a fractional derivative. There are many
definitions of the fractional derivative; simulations performed in this paper are
based on a numerical approximation to the Riesz fractional derivative. Note that
the dimensions of linear space and momentum are preserved by the constants
in Eqs. 3 and 4, where c is the speed of light in vacuum and ~ is the reduced
Planck constant.

We use time-independent perturbation theory of the space-fractional Schrödinger
equation in one dimension to determine the scalar, static, second hyperpolariz-
ability in the zero frequency limit.[15] The perturbing term in the Hamiltonian
caused by the constant electric field E is given by

Ĥpert
α = eE x̂, (5)

where Ĥα = Ĥ
(0)
α + Ĥpert

α with Ĥ
(0)
α given by Eq. 2. We take a particle-centric

approach, where the origin is placed at the expectation value of an electron in a
potential well. Note that we may remove subscripts for single electron systems,
where multi-electron systems will have different position operators based on
the relative displacements between their origins at their respective expectation
values. Only for α → 1 does the position operator and perturbation potential
become linear.

The fourth-order correction to the energy from time-independent perturba-
tion theory [16] is given by

E(4) =
∑
k,`,n

′

(
Ĥpert
α

)
0k

(
H

pert

α

)
k`

(
H

pert

α

)
`n

(
Ĥpert
α

)
n0

Ek0E`0En0

−
∑
k,`

′

(
Ĥpert
α

)
0k

(
Ĥpert
α

)
k0

(
Ĥpert
α

)
0`

(
Ĥpert
α

)
`0

E2
k0E`0

, (6)

where the prime denotes the sum over all states except the ground state. Short-

hand notation was introduced in Eq. 6, Eij = E
(0)
i −E

(0)
j andOij = Ôij−δijÔ00

with δ representing the Kronecker delta function, where Ôij =
〈
i(0)
∣∣ Ô ∣∣j(0)〉 is

the transition probability of the unperturbed system with
∣∣i(0)〉 being the un-

perturbed state vector indexed from the ground state i = 0.
The static, third-order, scalar response is given by

κ(3) =
1

(3)!

∂4

∂E4
E0 (E)

∣∣∣∣
E=0

, (7)

where E0 is the ground state energy. Thus, the sum-over-states expression for
the static, scalar, second hyperpolarizability given in terms of the transition
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energies and fractional transition moments is

κ(3) = 4e4
∑
k,`,n

′ x̂0kxk`x`nx̂n0
Ek0E`0En0

− 4e4
∑
k,`

′ x̂0kx̂k0x̂0`x̂`0
E2
k0E`0

. (8)

Because the theory is strictly particle-centric, the expectation value for an elec-
tron in its lowest energy state is always zero which allows us to neglect the bar
operator in Eq. 8.

The Leibniz rule and chain rule known from integer calculus do not take
the same form in fractional calculus, and therefore [x̂, p̂] will not, in general,
be equal to the constant i~ when α 6= 1. The TRK sum rule [17, 18, 19] for
the mechanical Hamiltonian found in the fractional Schrödinger equation results
in a wavefunction-dependent form. For a single electron, the fractional TRK
sum rule, calculated from the transition probability of the second commutation

relation of the Hamiltonian with the position operator
〈
k(0)

∣∣ [x̂, [Ĥ(0)
α , x

]] ∣∣`(0)〉,
follows as

∞∑
q=0

x̂kqx̂q`

[
E(0)
q −

1

2

(
E

(0)
k + E

(0)
`

)]
=

~2

2m
λα (k, `) , (9)

where

λα (k, `) =

∫
ψ
(0)†
k (x)

[
1

2
ξ̂2 (x)

∂2α

∂x2α
+

1

2

∂2α

∂x2α
ξ̂2 (x)− ξ̂ (x)

∂2α

∂x2α
ξ̂ (x)

]
ψ
(0)
` (x) dx

(10)

with ψ
(0)
i (x) =

〈
x|i(0)

〉
and ξ̂ (x) = |x|α sign (x). The normalized wavefunction

of the unperturbed system has the usual property,

δk` =

∫ ∞
−∞

ψ
(0)†
k (x)ψ

(0)
` (x) dx . (11)

Note that the summation over the state q is introduced into Eq. 10 through the
use of closure.

The (k = 0, ` = 0) TRK sum rule element gives,

E10 |(x̂)10|
2

=
~2

2m
λα (0, 0)−

∞∑
q=2

Eq0

∣∣∣(x̂)q0

∣∣∣2 . (12)

It is clear from Eq. 12 that the largest possible ground state transition moment
allowed by the TRK sum rule happens when all of the oscillator strength is in
the transition to the first excited state. Setting all terms in the sum for q ≥ 2
equal to zero gives the maximum value of the ground state to first excited state
transition moment,

x̂max
10 =

~√
2mE10

√
λα (0, 0), (13)

where transition moments of a bound electron described by the space-fractional
Schrödinger equation with the Riesz fractional derivative and mechanical Hamil-
tonian are real, and therefore, x̂ij = x̂ji.
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Table 1: Fractional transition dipole moments for a three-level model as a function of X̂, E,
and λα (k, `)

Source Transition dipole moment

Eq. 15 x̂10 =
~√

2mE10

X̂
√
λα (0, 0)

TRK (0, 0) x̂20 =
~√

2mE10

√
E
(

1− X̂2
)√

λα (0, 0)

TRK (1, 1) x̂12 =
~√

2mE10

√
E

1− E

√
X̂2λα (0, 0) + λα (1, 1)

TRK (0, 1) x11 =
~√

2mE10

[
E − 2√
1− E

√
1− X̂2

X̂

√
X̂2λα (0, 0) + λα (1, 1)

− 1

X̂

λα (1, 0)√
λα (0, 0)

]

TRK (0, 2) x22 =
~√

2mE10

[
1− 2E√

1− E
X̂√

1− X̂2

√
X̂2λα (0, 0) + λα (1, 1)

−

√
E

1− X̂2

λα (2, 0)√
λα (0, 0)

]

The maximum hyperpolarizability derived from the TRK sum rule with
only three levels has traditionally been regarded as the fundamental limit. The
three-level ansatz appears to hold when the response is near the fundamental
limit for a mechanical Hamiltonian in the standard Schrödinger equation. For
the case of the fractional Schrödinger equation, the fractional TRK sum rule
gives a reduced value which lowers the limit while the transition dipole moment
and energy eigenvalue dependencies are of the same form as the TRK sum rule
derived for the standard case. Thus, we expect the three-level ansatz to hold
for the systems described by the space-fractional Schrödinger equation.

The fundamental limit to the scalar second hyperpolarizability derived from
the standard Schrödinger equation with the three-level ansatz is well-established,
γmax = 4e4~4/m2E5

10.[20] Using the three-level ansatz, we define the parameters

E = E10/E20 (14)

and
X̂ = |x̂10| /x̂max

10 . (15)

Multiplying both sides of Eq. 15 by x̂max
10 gives the first transition moment

relationship in Table 1.
All transition dipole moments for a three-level model of the space-fractional

Schrödinger equation with a mechanical Hamiltonian can be expressed in terms
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of X̂, E, and λα (k, `). These remaining transition dipole moments are given in
Table 1. Substituting the transition moment expressions from Table 1 into Eq.
8, the three-level, space-fractional, second hyperpolarizability becomes

κ(3) =
e4~4

m2E5
10

{[
2X̂2

(
1− E2

) (
2− E3

)
− 5X̂4(1− E)

×
(
1− E2

) (
1 + E + E2

)
− E5

]
λ2α (0, 0)

+ (1− E)
[
(2 + E)2 − 4X̂2

(
1 + E − E3 − E4

)]
× λα (0, 0)λα (1, 1) + λ2α (1, 0)

+
√

(1− E)

√
λα (0, 0)

(
X̂2λα (0, 0) + λα (1, 1)

)
×
[
2X̂E7/2 (1 + 2E)λα (2, 0)

− 2
√

(1−X2) (2 + E)λα (1, 0)

]
+ E5λ2α (2, 0)

}
. (16)

When approaching integer dimensions, i.e., α → 1, the fractional λα coef-
ficients reduce to λα→1 (i, i) → 1 and λα→1 (i, j) → 0 for i 6= j. Thus, the
space-fractional Schrödinger equation is reduced to the standard Schrödinger
equation for the case of α→ 1 along with the Liebniz rule and chain rule from
integer calculus, which returns the standard TRK sum rule. The maximum,
single-particle, second hyperpolarizability for the case of α → 1 occurs when
X̂ = 0 and E = 0,

κ
(3)
max,α→1 =

e4~4

m2E5
10

. (17)

As α is reduced below unity, the diagonal elements λα (0, 0) and λα (1, 1)
can fall below unity. Thus, the reduced order of the momentum operator in the
kinetic energy term reduces the fundamental limit of the second hyperpolariz-
ability. The terms that contain the parameters λα (1, 0) and λα (2, 0) in Eq. 16
are consistently near zero for every class of potential that we have numerically
evaluated when in the particle centric view; however, these terms become large
non-zero values when the origin is moved away from the ground state expecta-
tion value. The TRK sum rule is not wavefunction dependent for α = 1, which
is a known result for the TRK sum rule derived from standard Schrödinger
equation with a mechanical Hamiltonian.

3. Discussion

The limit to the second hyperpolarizability occurs at the integer dimension
limit. For fixed α 6= 1, the diagonal elements of the TRK sum rule depend on

6



α = 0.70

(a)

E
n

e
rg

y
 (

a
. u

.)

2.0

1.5

1.0

0.5

0.0
-20 -10 0 10 20

Position (a. u.)

E
n

e
rg

y
 (

a
. u

.)

0

2

4

6

8

10

12

14

α = 1

α = 0.85

α = 0.70En

E0

(0)

(0)

(d)

α = 1

(c)

5

-3 -1 0 1 2

2

1

0

4

3

-2 3

Position (a. u.)

α = 0.85

(b)

3

-6 -3 0 3 6

2

1

0

Position (a. u.)

E
n

e
rg

y
 (

a
. u

.)

Figure 1: The potential well (black line) along with the ground state and first four excited
state wavefunctions (gray lines) for a fractional QHO. The single bound particle systems are
shown for (a) α = 0.70, (b) α = 0.85, and (c) α = 1. (d) The first 8 energy eigenvalues for
the fractional QHO for the α values used to to generate graphs (a), (b), and (c).

the wavefunction. Thus, the limit at α 6= 1 depends on the potential. Therefore,
we define the apparent intrinsic second hyperpolarizability,

κ(3)app =
κ(3)

κ
(3)
max,α→1

, (18)

which compares the space-fractional second hyperpolarizability to the maximum
second hyperpolarizability when α = 1.

The fractional quantum harmonic oscillator (QHO) is defined with the po-
tential

V (x̂) =
1

2
mω2x̂2 (19)

where ω is the angular frequency and the origin is placed at the ground state
expectation value, x̂00 = 0. The fractional QHO in integer space is a linear
system. Thus, the second hyperpolarizability is zero for α = 1.

The potential and first four wavefunctions of the fractional QHO are shown
in Fig. 1 for (a) α = 0.70, (b) α = 0.85, and α = 1, which are given in atomic
units (a. u.). It is obvious that centrosymmetry is preserved when choosing the
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Figure 2: The apparent intrinsic polarizability κ
(1)
app and apparent intrinsic second hyperpo-

larizability κ
(2)
app for the fractional QHO (ω = 1 a.u.) as a function α.

origin at the minimum of the potential well. Figure 1(d) shows the change in
the spacing between transitions as α is decreased. In addition to the unevenly
spaced energy spectrum of the fractional QHO for 0 < α < 1, the entirety of
the oscillator strength is no longer in the ground to first excited state transition
and allows for a nonzero second hyperpolarizability.

We used a finite-difference approximation of the Riesz fractional derivative
[21] via the half sum of the left- and right-sided Caputo fractional derivatives
to numerically determine the energy eigenvalues and wavefunctions. Note that
the central difference scheme converges to the usual local second-order finite-
difference approximation when α→ 1; however, the scheme is nonlocal for α 6=
1, which made sparse matrix calculations more time consuming for decreasing
α. Thus, we used Cholesky factorization to determine the energy levels and
wavefunctions. The calculations shown in Fig. 1 are approximated with an
8000× 8000 Hamiltonian matrix, where each Dirichlet boundary is set far from
the potential so that the wave functions converge near zero for a significant
fraction of the total calculated domain.

The apparent intrinsic polarizability and apparent intrinsic second hyper-
polarizability of the fractional QHO as a function of α are shown in Fig. 2.
The apparent intrinsic second hyperpolarizability is calculated using the first
20 eigenstates with the sum-over-states expression given in Eq. 8. It was pre-
viously discovered that the hyperpolarizability was more sensitive to the value
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Figure 3: The apparent intrinsic second hyperpolarizability as a function of the power, a, of
a symmetric power potential with b = 1 a.u. The inset shows the power, a, as a function of α
when the second hyperpolarizability is zero, where the dotted line is numerically approximated
and the gray line is the theoretical slope of 2.

of α than the polarizability, where κ(1) is of order λα while κ(2) is of order

λ
3/2
α . The second hyperpolarizability is proportional to a sum of four multi-

plicative fractional dipole transition moments, which is of order λ2α. Thus, we
expect that the magnitude of the space-fractional second hyperpolarizability to
decrease faster than the polarizability and hyperpolarizability with decreasing
α.

It was previously noted that moving the origin away from the particle-centric
position, x̂00, caused the hyperpolarizability to further decrease when α 6= 1.
Regarding broad physical and mathematical concerns, centrosymmetric systems
have an even more interesting consequence for moving away from the particle-
centric model. When the origin of the space-fractional system is not located
at x̂00, a centrosymmetric potential becomes asymmetric for α 6= 1 and the
hyperpolarizability is no longer zero. Thus, although the maximum possible
second hyperpolarizability is reduced when α is taken just below unity, the
hyperpolarizability can be increased for this general case. to a non-zero for this
general situation. This type of symmetry breaking is not a concern when we
constrain ourselves to the particle-centric view.

An interesting consequence of relaxing our notion of integer operators is
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discovered while investigating the fractional QHO, where a linear system be-
comes nonlinear with a negative fractional second hyperpolarizability. As the
fractional parameter is further reduced, the drop in the net oscillator strength
dominates the response, where κ(1) → 0 as α→ 1/2. Examining the three-level
model given by Eq. 16, each term has a λ2α dependence. Evaluating Eq. 10 for
any wavefunction satisfying the fractional Schrödinger equation when α→ 1/2
gives a zero value for the diagonal λα matrix. The off-diagonal coefficients of
the λα matrix are zero in the particle centric view. Thus, it is of no surprise
that the second hyperpolarizability approaches zero as α→ 1/2. Note that the

three-level model of the first hyperpolarizability has a λ
3/2
α dependence and the

polarizability has a linear dependence on λα, which fall to zero as α → 1/2 at
a lower rate than the second hyperpolarizability.

The consequence of transforming a linear system such as the QHO into a
nonlinear system warrants further investigation. There is a slow deviation from
linearity as α is decreased from unity, therefore we suspect that there exists a
symmetric power potential that constitutes a linear system for α 6= 1,

V = b |x̂|a , (20)

where b = 1 a.u. is chosen for simplicity.
The main plot in Fig. 3 shows the apparent intrinsic second hyperpolar-

izability as a function of the power, a, for different values of α. The second
hyperpolarizability shows the same trend for all α but with differing magni-
tudes and axis crossings. As α is decreased, the power a also decreases for a

potential with κ
(3)
app = 0 corresponding to a zero second hyperpolarizability. This

zero second hyperpolarizability is caused by the entire oscillator strength being
in the ground state to first excited state transition. Thus, the first summation
on the right-hand-side of Eq. 8 perfectly cancels with the second summation.

The inset in Fig. 3 shows a as a function of α when the second hyperpolar-
izability of the symmetric power potential is zero. The dotted line represents
the numerical approximation of the fractional Schrödinger equation and mini-
mization of the apparent intrinsic second hyperpolarizability and the gray line
represents the theoretically predicted line with a slope of 2. The disagreement
between the two lines representing the numerical approximation and the theo-
retical prediction are from the limitation of a 3000 × 3000 matrix representing
the Hamiltonian in the numerical approximation as well as the increased shal-

lowness of the minimum of
∣∣∣κ(3)app

∣∣∣ as α becomes small. The increased shallowness

in the region near the minimum of
∣∣∣κ(3)app

∣∣∣ is observed in the main plot of Fig. 3

by the reduced angle when crossing the axis at small α.

4. Conclusion

The static, space-fractional, second hyperpolarizability was derived from the
space-fractional Schrödinger equation. The space-fractional TRK sum rule el-
ements were shown to be equal to a wavefunction dependent quantity after
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examining
[
x̂,
[
Ĥ

(0)
α , x̂

]]
for 1/2 < α < 1. The three-level model contained

two diagonal λα parameters. The two off-diagonal λα were zero for symmet-
ric power law functions, which is in line with previous findings in that these
same off-diagonal terms were nearly zero for numerically evaluated asymmetric
potentials with the origin fixed at x̂00.[10] The generalized expression for the
three-level model is reduced to that derived from the standard Schrödinger equa-
tion with a mechanical Hamiltonian when setting λα (i, i) = 1 and λα (i, j) = 0
for i 6= j.

The apparent intrinsic second hyperpolarizability was presented as the space-
fractional quantum system’s second hyperpolarizability divided by the maxi-
mum second hyperpolarizability allowed by the TRK sum rule elements derived
from the standard Schrödinger equation. The fractional QHO was shown to
change from a linear to a nonlinear system, where the second hyperpolarizabil-
ity became negative. The linear and nonlinear response approached zero when
α→ 1/2 as expected. We also showed that for 1/2 < α ≤ 1, there exists a sym-

metric power potential that corresponds to a linear system with κ
(3)
app = 0. The

trendline for a as a function of α as compared to the theoretical slope of 2 was
shown to be a useful metric for the accuracy of the numerical approximations
to the space-fractional Schrödinger equation.

Although the non-relativistic quantum mechanical description of spinless,
charged, quantum systems can be described by the standard Schrödinger equa-
tion, there may be some quasi-particle, exotic-particles, and long-range systems
with a space-fractional Schrödinger equation description. There has also been
some recent success identifying optical systems that are described by the space-
fractional Schrödinger equation.[22, 23] Thus, we might also anticipate some
quantum systems with complicated charged particle dynamics that can be ap-
proximated by the space-fractional Schrödinger equation. Wei [24] pointed out
that when α→ 1/2, the kinetic energy of the space-fractional Schrödinger equa-
tion approaches the same order of momentum dependence as the kinetic energy
in the relativistic Schrödinger equation. Because the net oscillator strength ap-
proaches zero for bound systems of charged particles as α → 1/2, we expect
approximate low α space-fractional Schrödinger equation systems and approxi-
mate relativistic Schrödinger equation systems to interact weakly with photons.
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