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1. Introduction

Experimental realization of three-wave mixing of coherent light was first reported

by Franken et al. in 1961, where second-harmonic generation was observed.1 In

1962, Armstrong et al. developed methods to analytically describe second harmonic

generation as well as general sum- and difference-frequency generation.2 Sum- and

difference-frequency generation were observed within the following year using a

ruby laser and mercury lamp.3,4

The field of nonlinear optics typically focuses on either the macroscopic obser-

vations such as self focusing 5 and nonlinear absorption,6 or the fundamental prop-
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erties of materials that underpin the nonlinear optical response.7 The electronic re-

sponse often involves numerical techniques to theoretically determine the strength of

the nonlinear electronic response of materials in the quantum regime,8,9,10 although

some analytical tools have been developed to better understand the limits of the

nonlinear-optical coefficients to design better materials.11,12,13,14,15,16 The macro-

scopic phenomena predicted by classical electromagnetism equations contain the

nonlinear-optical coefficients determined from their microscopic properties.17,18,19

Mechanisms other than the electronic response can result in nonlinear optical phe-

nomena such as the vibrational response,20 molecular reorientation,21 and thermo-

optic effect,22 albeit the electronic response time is quicker.23,24

The clever and yet complicated description of general three-wave mixing pro-

vided by Armstrong et al. required the constraints of power flow equations in ad-

dition to the three nonlinear amplitude equations.2 The solution to the three-wave

mixing problem also involved ranking the roots of a cubic equation. The solutions

to the nonlinear amplitudes were based on the Jacobi elliptic sn function and con-

tain the roots of the cubic equation both inside and outside of the special function’s

argument. The undepleted pump approximation and other special cases have been

used to formulate simplified expressions for specific sets of parameters.25 Numerical

methods can also be used to quickly approximate the slow-varying field amplitudes

such as the explicit finite-difference scheme.

The homotopy analysis method (HAM) was developed to approximate nonlinear

differential equations using analytical expressions.26 The HAM has previously been

used to describe the behavior of a pulse propagating in a semiconducting optical

amplifier.27 Analytical expressions for time-dependent eikonal equations 28 and the

nonlinear Schrodinger equation 29 have also been generated using the HAM. In this

paper, we show that the classical problem of three-wave mixing in a second-order

material can be approximated in terms of common functions using the HAM.

2. Review of Wave Propagation in Nonlinear Dielectric Media

The time-domain wave equation for the electric field of a light wave propagating in

a nonlinear dielectric medium is given by

∇2 ~E (~r, t)−∇
(
∇ · ~E (~r, t)

)
=

1

c2
∂2 ~E (~r, t)

∂t2
+ µ0

∂2

∂t2
~P (1) (~r, t) + µ0

∂2

∂t2
~PNL (~r, t)

(2.1)

where ε0 and µ0 are respectively the permittivity and permeability of free-space in

SI units, and c = 1/
√
ε0µ0 is the speed-of-light in vacuum. The vector ~E represents

the electric field at position ~r and at time t, and the vectors ~P (1) and ~PNL are

respectively the linear and nonlinear polarizations of the dielectric medium. Note

that certain materials have non-negligible magnetic contributions to the nonlinear

electric polarization response,30 but those materials are not being considered. Also

note that we are only considering the dipolar response, where higher-order multipole

moments are being neglected.
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The charge density is given by Gauss’s law,

ρ (~r, t) = ∇ · ~D (~r, t)

= ε0∇ · ~E (~r, t) +∇ · ~P (1) (~r, t) +∇ · ~PNL (~r, t) . (2.2)

It follows that

ε0∇ · ~E (~r, t) = ρ (~r, t)−∇ · ~P (1) (~r, t)−∇ · ~PNL (~r, t) . (2.3)

From Eq. 2.1 and 2.3, the wave equation for the propagation of light through a

nonlinear dielectric medium can be rewritten as

∇2 ~E (~r, t)− 1

ε0
∇
[
ρ (~r, t)−∇ · ~P (1) (~r, t)−∇ · ~PNL (~r, t)

]
=

1

c2
∂2 ~E (~r, t)

∂t2
(2.4)

+ µ0
∂2

∂t2
~P (1) (~r, t) + µ0

∂2

∂t2
~PNL (~r, t) .

The linear polarization in the time domain is a convolution of the second-rank

tensor, X, and the electric field,

~P (1) (~r, t) = ε0

∫ t

−∞
dt′X

(1)
(~r, t− t′) · ~E (~r, t′) , (2.5)

In component form, the time-dependent linear polarization is given by

P (1)
α (~r, t) = ε0

∫ t

−∞
dt′X

(1)
αβ (~r, t− t′)Eβ (~r, t′) . (2.6)

The Greek subscripts represent Cartesian coordinates in Eq. 2.6, and there are

no distinctions made between covariant and contravariant tensor components. The

nonlinear polarization is expressed as a series, which is expanded in powers of the

electric field. In Cartesian coordinates, the α component of the nonlinear polariza-

tion follows as

PNL
α (~r, t) = ε0

∫ t

−∞

∫ t

−∞
dt1 dt2X

(2)
αβγ (~r, t− t1, t− t2)Eβ (~r, t1)Eγ (~r, t2) (2.7)

+ ε0

∫ t

−∞

∫ t

−∞

∫ t

−∞
dt1 dt2 dt3X

(3)
αβγδ (~r, t− t1, t− t2, t− t3)

× Eβ (~r, t1)Eγ (~r, t2)Eδ (~r, t3) + · · · .

The current set of equations in the time domain is quite difficult to handle

analytically due to the presence of nonlinear convolutions. A constant amplitude

and sinusoidal function is one possible solution to the linear wave equation, which

describes a monochromatic plane wave. When the local response function is static

over time, e.g. no changes in a homogeneous material due to heating, reorientation,

chemical reactions, etc., then the wave equation for light propagating in a nonlinear

medium (including all electric dipole polarization response functions) can be written

in the frequency domain. In the time domain, more complex optical waveforms

can be created in nature; however, these waves can be constructed from a set of
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sinusoidal waves. The Fourier transform of the time domain to the frequency domain

is defined as

~E(~r, ω) =

∫ ∞
−∞

~E(~r, t)ejωtdt . (2.8)

Because each frequency component is independent, the linear polarization in the

frequency domain is simply given by

P (1)
α (~r, ω) = ε0χ

(1)
αβ (~r, ω;ω)Eβ (~r, ω) . (2.9)

The linear response function in this form, χ(1), is commonly referred to as the linear

electric susceptibility. The nonlinear polarization in the frequency domain follows

as

PNL
α (~r, ωm) = ε0

∑
βγ

∑
lk

χ
(2)
αβγ (~r, ωm = ωl + ωk;ωl, ωk)Eβ (~r, ωl)Eγ (~r, ωk) (2.10)

+ ε0
∑
βγδ

∑
lku

χ
(3)
αβγδ (~r, ωm = ωl + ωk + ωu;ωl, ωk, ωu)

× Eβ (~r, ωl)Eγ (~r, ωk)Eδ (~r, ωu) + · · · .

where all frequencies can be positive or negative. It is obvious why most analytical

nonlinear optical calculations are performed in the frequency domain, where the

lack of multiple time integrals can significantly reduce the complexity of problems

for a discrete number of frequencies. Note that there are several properties of the

nonlinear susceptibility tensor that can be used to relate the elements, and thereby

reduce the total number of independent parameters.

3. Review of Simplified Second-Order Frequency Mixing

The three-dimensional wave equation for an electric field in a second-order nonlinear

optical material in vector-component form is given by

∑
m

∑
α

∂

∂rα

 ∂

∂rα

∑
β

Eβ,m (~r, ωm) r̂α −
∑
β

∂

∂rβ
Eβ,m (~r, ωm) r̂β

 = (3.1)

−
∑
m

ω2
m

c2

∑
α

[
Eα,m (~r, ωm) + χ

(1)
αβ (~r, ωm;ωm)Eβ,m (~r, ωm)

+
∑
βγ

∑
lk

χ
(2)
αβγ (~r, ωm = ωl + ωk;ωl, ωk)Eβ,l (~r, ωl)Eγ,k (~r, ωk)

]
r̂α ,

where rα denotes the Cartesian coordinates x, y, and z. Likewise, r̂α refers to the

Cartesian unit vector. Note that we have already assumed a traveling wave solution

based on the form of Eq. 3.1 implemented as a series of separate terms with different

frequencies.
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Equation 3.1 can lead to quite complicated analytical expressions. Thus, we

will simplify second-order frequency mixing problems by assuming a plane wave

in an infinite nonlinear optical medium. The nonlinear medium also is assumed to

contain no free charges. To further simplify, let us assume that the electric field

is linearly polarized and the wave is propagating in the direction of the positive x

axis. We also assume that the second-order nonlinear material is homogeneous. Let

us further assume that the Kleinman symmetry condition holds, where the scalar

wave equations can be rewritten using the convention χ2 = 2deff . Under these

approximations, Eq. 3.1 reduces to a simplified form,∑
m

d2

dx2
Em (x, ωm) = −

∑
m

ω2
m

c2

[
Em (x, ωm) (3.2)

+ χ(1) (ωm;ωm)Em (x, ωm) + 2
∑
lk

deffEl (x, ωl)Ek (x, ωk)

]
.

Note that Em and χ(1) are now frequency dependent scalars. The amplitudes of the

plane waves for each frequency component are known at x = 0 immediately after

they enter the nonlinear material.

We are interested in finding approximate solutions to Eq. 3.2 which have lin-

ear solutions oscillating at individual frequencies, each an orthogonal oscillating

function, and with varying amplitudes. Thus, we can rewrite Eq. 3.2 as∑
m

d2

dx2
Am (x) cos (nmωmx/c− ωmt) = −

∑
m

ω2
m

c2

[
1 + χ(1) (ωm;ωm)

]
Am (x) cos (nmωmx/c− ωmt)

+ 4
∑
m

∑
lk

deffAl (x)Ak (x) cos (nlωlx/c− ωlt) cos (nkωkx/c− ωkt) . (3.3)

We have explicitly written the form of the assumed solution of an oscillating wave

with a slow-varying amplitude,

Em (x, ωm) = 2Am (x) cos (nmωmx/c− ωmt) , (3.4)

where

nm =
√

1 + χ(1) (ωm;ωm) . (3.5)

The cosine function can be rewritten using Euler’s formula. Equation 3.3 can then

be rewritten as∑
m

d2

dx2

[
Am (x) ej(nmωmx/c−ωmt) + c. c.

]
=
∑
m

n2
m

ω2
m

c2

[
Am (x) ej(nmωmx/c−ωmt) + c. c.

]

+ 2
ω2
m

c2

∑
m

∑
lk

deff

[
Al (x) ej(nlωlx/c−ωlt) + c. c.

][
Ak (x) ej(nkωkx/c−ωkt) + c. c.

]
,

(3.6)

where c. c. denotes the complex conjugate of the left-hand terms in each bracket

containing the symbol.
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Because of the orthogonality condition for frequency components,

∫ ∞
−∞

ejωte−jω
′t dt = δ (ω′ − ω) , (3.7)

Eq. 3.6 may be rewritten as separate equations, where ωm = ω1, ω2, ω3, . . .. Let

us limit the study to three possible waves traveling at angular frequencies ω1, ω2,

and ω3, where ω1 + ω2 − ω3 = 0. For such cases, the only nonlinear scenario,

ignoring higher-order nonlinearities from microscopic cascading effects,31,32 occurs

when two of the frequencies either add or subtract and results in the third possible

frequency. Including all relevant frequency mixing terms in the nonlinear interaction

summation, the three wave equations follow as

d2

dx2

[
A1 (x) ej(n1ω1x/c−ω1t) + c. c.

]
= −n2

1

ω2
1

c2

[
A1 (x) ej(n1ω1x/c−ω1t) + c. c.

]

− 4
ω2

1

c2
deff

[
A∗2 (x)A3 (x) ej[(n3ω3−n2ω2)x/c−ω1t] + c. c.

]
, (3.8)

d2

dx2

[
A2 (x) ej(n2ω2x/c−ω2t) + c. c.

]
= −n2

2

ω2
2

c2

[
A2 (x) ej(n2ω2x/c−ω2t) + c. c.

]

− 4
ω2

2

c2
deff

[
A∗1 (x)A3 (x) ej[(n3ω3−n1ω1)x/c−ω2t] + c. c.

]
, (3.9)

d2

dx2

[
A3 (x) ej(n3ω3x/c−ω3t) + c. c.

]
= −n2

3

ω2
3

c2

[
A3 (x) ej(n3ω3x/c−ω3t) + c. c.

]

− 4
ω2

3

c2
deff

[
A1 (x)A2 (x) ej[(n1ω1+n2ω2)x/c−ω3t] + c. c.

]
. (3.10)

Due to the symmetry of real valued oscillating functions expressed as a clockwise

and a counter-clockwise motion oscillating at the same frequency on the complex

unit circle, either the explicitly given terms in Eqs. 3.8-3.10 or the complex conju-

gates will alone satisfy the equalities. Therefore, without loss of generality, we can

subtract the complex conjugate terms from both sides of Eqs. 3.8-3.10 leaving a

complex amplitude equation. Afterward, the time dependence can be divided out

of the equations.

The assumed form of the solution with a position dependent amplitude multi-

plied by a complex oscillating function allows us to use the product rule,

d2

dx2
Am (x) ejnmωmx/c = ejnmωmx/c

[
d2

dx2
Am (x)+2jnm

ωm
c

d

dx
Am (x)−n2

m

ω2
m

c2
Am (x)

]
.

(3.11)
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Thus, we may rewrite Eqs. 3.8-3.10 using Eq. 3.11 and then divide by ejnmωmx/c,[
d2

dx2
+ 2jn1

ω1

c

d

dx

]
A1 (x) = −4

ω2
1

c2
deffA

∗
2 (x)A3 (x) ej(n3ω3−n2ω2−n1ω1)x/c ,

(3.12)[
d2

dx2
+ 2jn2

ω2

c

d

dx

]
A2 (x) = −4

ω2
2

c2
deffA

∗
1 (x)A3 (x) ej(n3ω3−n2ω2−n1ω1)x/c ,

(3.13)[
d2

dx2
+ 2jn3

ω3

c

d

dx

]
A3 (x) = −4

ω2
3

c2
deffA1 (x)A2 (x) ej(n1ω1+n2ω2−n3ω3)x/c .

(3.14)

The slow-varying amplitude approximation can be made when the following

condition holds, ∣∣∣∣d2Am
dx2

∣∣∣∣� ∣∣∣∣ωmc dAm
dx

∣∣∣∣ . (3.15)

Setting dA2
m/dx

2 ≈ 0 in Eqs. 3.12-3.14 results in the final simplified expressions for

three-wave mixing,

dA1

dx
= 2j

ω1

n1c
deffA

∗
2A3e

j(n3ω3−n2ω2−n1ω1)x/c , (3.16)

dA2

dx
= 2j

ω2

n2c
deffA

∗
1A3e

j(n3ω3−n2ω2−n1ω1)x/c , (3.17)

dA3

dx
= 2j

ω3

n3c
deffA1A2e

j(n1ω1+n2ω2−n3ω3)x/c . (3.18)

Equations 3.16-3.18 are a set of three interacting nonlinear equations. The spa-

tial dependent amplitudes can be multiplied by their respective oscillating wave

functions to give approximate solutions to Eqs. 3.8-3.10.

4. Homotopy Analysis Method Applied to Second-Order Wave

Mixing

The following describes the basic idea of HAM. Let

N1[A1(x)] =
dA1

dx
− 2j

ω1

n1c
deffA

∗
2A3e

j(n3ω3−n2ω2−n1ω1)x/c , (4.1)

N2[A2(x)] =
dA2

dx
− 2j

ω2

n2c
deffA

∗
1A3e

j(n3ω3−n2ω2−n1ω1)x/c , (4.2)

N3[A3(x)] =
dA3

dx
− 2j

ω3

n3c
deffA1A2e

j(n1ω1+n2ω2−n3ω3)x/c , (4.3)

where N1[A1(x)] = N2[A2(x)] = N3[A3(x)] = 0.
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By using the technique of HAM 33, we construct the zeroth-order deformation

equations,

(1− p)L1[A1(x; p)− e10(x)] = phH1(x)N1[A1(x; p)] , (4.4)

(1− p)L2[A2(x; p)− e20(x)] = phH2(x)N2[A2(x; p)] , (4.5)

(1− p)L3[A3(x; p)− e30(x)] = phH3(x)N3[A3(x; p)] , (4.6)

where p ∈ [0, 1] is the embedding parameter, h 6= 0 is an auxiliary parameter,

and Lm are auxiliary linear operators. The Hm(x) denote the nonzero auxiliary

functions. The solution to each separate frequency-component wave equation will

be of the form,

Am(x; p) = em0 (x) +

∞∑
q=1

emq(x)pq . (4.7)

For the linear operators,

Lm(.) =
∂(.)

∂x
, (4.8)

we get

Lm(.)−1 =

∫ x

(.)ds+ bmq, L(bmq) = 0 , (4.9)

where bnq is a constant of integration for the qth iteration of the mth equation.

We see when p = 0 and p = 1, Am(x; 0) = emq(x) and Am(x; 1) = Am(x), which

must be one of the solutions to a nonlinear equation Nm[Am(x; p)] = 0 as proven

by Liao.34,35 Expanding Am(x; p) in a Taylor series with respect to p,

Am(x; p) = em0(x) +

∞∑
q=1

emq(x)pq, where emq(x) =
1

q!

∂qAm(x; p)

∂pq
∣∣
p=0

. (4.10)

We then define the vector,

~emq(x) = (em0(x), em1(x), em2(x), . . .) . (4.11)

Differentiating the zeroth-order deformation equations, Eqs. 4.4-4.6, q-times

with respect to p, dividing them by q!, and then setting p = 0, results in the

qth-order deformation equations,

Lm[emq(x)− ξqem(q−1)(x)] = h<mq ~emq(x) , (4.12)

where

ξq =

{
0, q ≤ 1

1, q > 1 .
(4.13)

and

<mq(~emq(x)) =
1

q!

∂q−1Nm[Am(x; p)]

∂pq−1

∣∣
p=0

. (4.14)
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Substituting Eqs. 4.1-4.3 into Eq. 4.14, we find

<1q(~e1q(x)) =
d

dx
e1(q−1)(x) (4.15)

− 2j
ω1

n1c

q−1∑
u=0

deffe
∗
2u(x)e3(q−u−1)(x)ej(n3ω3−n2ω2−n1ω1)x/c ,

<2q(~e2q(x)) =
d

dx
e2(q−1)(x) (4.16)

− 2j
ω2

n2c

q−1∑
u=0

deffe
∗
1u(x)e3(q−u−1)(x)ej(n3ω3−n2ω2−n1ω1)x/c ,

<3q(~e3q(x)) =
d

dx
e3(q−1)(x) (4.17)

− 2j
ω3

n3c

q−1∑
u=0

deffe1u(x)e2(q−u−1)(x)ej(n1ω1+n2ω2−n3ω3)x/c .

Following Eq. 4.12, we can now write expressions for iteratively determining the

enq terms,

e1q(x) = ξqe1(q−1)(x) + h

∫ x

0

d

ds
e1(q−1)(s) ds (4.18)

− 2jh
ω1

n1c
deff

q−1∑
u=0

∫ x

0

e∗2u(s)e3(q−u−1)(s)e
j(n3ω3−n2ω2−n1ω1)s/cds ,

e2q(x) = ξqe2(q−1)(x) + h

∫ x

0

d

ds
e2(q−1)(s) ds (4.19)

− 2jh
ω2

n2c
deff

q−1∑
u=0

∫ x

0

e∗1u(s)e3(q−u−1)(s)e
j(n3ω3−n2ω2−n1ω1)s/cds ,

e3q(x) = ξqe3(q−1)(x) + h

∫ x

0

d

ds
e3(q−1)(s) ds (4.20)

− 2jh
ω3

n3c
deff

q−1∑
u=0

∫ x

0

e1u(s)e2(q−u−1)(s)e
j(n1ω1+n2ω2−n3ω3)s/cds ,

5. Results

Consider the linear differential operators, dAlin
m /dx = 0. The solutions to the three

linear amplitude equations, (Alin
1 , Alin

2 , Alin
3 ), are all constants (a1, a2, a3) deter-

mined by the left boundary value at x = 0, where the direction of propagation

points to the right. In general, the constants a1, a2, and a3 are complex ampli-

tudes. The solutions to the linear differential operators are used as the initial guess

in the HAM approach, i.e., (e10, e20e30) = (a1, a2, a3). Higher-order deformations

are iteratively determined via Eqs. 4.18-4.20, where the approximation is obtained

after summing each term according to Eq. 4.10 out to the highest order of the

truncated Taylor series and letting q → 1.
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Table 1. Parameters for
HAM comparison with nu-
merical results.

Parameter value units

ω1/2π 250 THz
ω2/2π 350 THz
ω3/2π 600 THz
P1 100 MW
P2 50 MW
P3 20 kW
R 2.5 mm
deff 2 pm/V

0.6664

0.6662

0.6660

0.6658 (a)

Truncated to 1st order Truncated to 2nd order
Truncated to 4th order Explicit �nite di�erence

0.6666

(b)

0.3330

0.3327

0.3324

0.3321

0.3333

I to
tI

(c)

0.0 0.2 0.4 0.6 0.8 1.0
x (mm)

0.0015

0.0010

0.0005

0.0000

0.0020

Fig. 1. Phase mismatched results with n1 = 1.776, n2 = 1.777, and n3 = 1.780 for the normalized
intensities of waves oscillating at (a) ω1, (b) ω2, and (c) ω3. The HAM approximation with h = −1
out to 4th order from an initial guess determined by the linear differential operator is compared
to an explicit finite-difference approximation. The parameters are given in Table 1.

A phase mismatch can occur in nonlinear dispersive media, where it is convenient

to define the difference in wave numbers,

∆k = (n3ω3 − n2ω2 − n1ω1) /c . (5.1)
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When ∆k 6= 0, the mismatch in phase over distances causes the nonlinear mixing

to be generated and quickly depleted over short cycle governed by ∆k. For small

values of ∆k the oscillations in phase mismatched generation/depletion are slow,

where increasing ∆k quickly results in oscillations that are much faster and smaller

in amplitude.

The first few orders in the HAM approximation for a phase mismatched scenario

are given in Appendix A. The HAM results are plotted in Fig. 1 for h = −1 and

compared to numerical results. The field amplitudes at the left boundary were

determined by first assuming a plane wave with a power P measured over a small

circular area of radius R, where the intensity is given by

I =
P

πR2
. (5.2)

Assuming negligible third-order and higher contributions to the light-matter inter-

action, the intensity is related to the field magnitude by

Im (x = 0) =
1

2
cnmε0 |am|2 . (5.3)

For simplicity, the amplitudes were assumed real with zero phase at the boundary.

The amplitude oscillations out to a 1 mm depth are shown in Fig. 1 by plotting

the normalized intensities as a function of x, where Itot = I1 + I2 + I3. Several

amplitude oscillations resulting from the phase mismatch are shown, where n1 =

1.776, n2 = 1.777, and n3 = 1.780 which corresponds to a value of ∆k ≈ 43 rad/mm

for the frequencies provided in Table 1. The value of ∆k results approximately 6.8

amplitude oscillations over the length of a millimeter. The exponential functions

in the nonlinear terms quickly enter the HAM approximation after the first-order

iteration. By the second iteration the HAM approximation for all three amplitudes

closely matches the numerical results over a few amplitude oscillations. The fourth

order HAM approximation further increases the accuracy. The HAM approximation

is compared to numerical results obtained using an explicit finite-difference scheme.

The perfectly phase-matched scenario occurs when ∆k = 0. The most common

experimental technique to obtain perfect phase matching utilizes the birefringence

of anisotropic crystals, where an axis of a crystal is rotated out of plane to change

the refractive indices of light polarized along specific directions.25 The HAM ap-

proximation for the perfectly phase matched case, using the values given in Table

1, is shown in Fig. 2. The normalized intensities corresponding to the frequencies

ω1, ω2, ω3 are displayed as a function of the penetration depth through the nonlin-

ear medium. The low-order iterations for h = −1 result in polynomial expressions

which quickly converge to the numerical approximation up to the first inflection

point. The HAM approximation expressed out to an 18th-order polynomial does

not converge out to the first extremum for x > 0 when h = −1 as illustrated in Fig.

2. Due to the fast convergence of the approximation out to the first inflection point,

after only a few iterations the position of the inflection point can be determined

via dA2/dx2 = 0. The inflection point is midway between local extrema, where de-
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Fig. 2. The normalized intensities for the perfectly phased matched case with n1 = n2 = n3 =
1.78 are plotted for fields oscillating at frequencies (a) ω1, (b) ω2, and (c) ω3. The HAM approx-
imation out to 18th order for h = −1 is compared to results from an explicit finite-difference
scheme. The parameters are given in Table 1, which corresponds to sum frequency generation at
small x.

termining the amplitude at the inflection point will determine the amplitude at the

next extremum for a lossless medium. The periodicity of the solution for the case

of a lossless medium allows for the amplitude to be approximated to the left and

right at each extrema, which can be used to piece together the oscillating function

if amplitudes need to be determined over a greater penetration depth.

The terms obtained from HAM for the perfectly phase-matched case are given in

Appendix B. The term emq is a qth order polynomial. When h = −1, the term emq
becomes a power function to the qth power. There is no power mixing between terms

for the power series basis used in our formulation of the HAM approximation to

three-wave mixing when h = −1. The auxiliary parameter can be in the range −2 <

h < 0, where the value affects the convergence region for x as well as the accuracy of

the function. As the auxiliary parameter is increased to a smaller negative number,

the convergence region for x increases. Clearly, if we want the series to be convergent

for 0 ≤ x < ∞, then h would tend to zero. When h → 0, then the approximation
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approaches the constant initial guess, which is convergent for x out to infinity, but it

is also a terrible approximation for finite values of x. For a polynomial representation

of an oscillating function in general, we find that as the convergence region of x

is increased, the approximation becomes worse at small x. Therefore, there is an

optimal value of h over the defined region in which the field amplitudes are to be

approximated from a truncated series solution.

The normalized intensities corresponding to the waves propagating with fre-

quencies ω1, ω2, and ω3 are shown in Fig. 3(a)-(c), which have been approximated

with HAM to 10th order. The approximations are compared to results obtained

by an explicit finite-difference scheme. The HAM results increase their convergence

region in x when h is increased, where the 10th-order HAM approximation more

closely approximates the first extremum for x > 0. Before the first inflection point,

the 10th-order HAM results are already very good approximations. Decreasing the

auxiliary parameter below negative one has little benefit and can significantly de-

crease the convergence region as illustrated for h = −1.25. To see how the auxiliary

parameter changes the convergence region and the goodness of the approximation,

Fig. 3(d) shows the normalized intensity variance σ2 between the extremum at

x = 0 and the first extremum for x > 0 as a function of the auxiliary parame-

ter. The optimal auxiliary parameter for a specified range can be determined by

minimizing the sum of each amplitude’s variance.

The HAM expression is an analytical approximation to the given system of

equations. Unlike the exact analytical solution given by Armstrong et al. which

requires the ranking of the roots of a cubic equation, there is no need to specify

conditions beyond the boundary conditions. The HAM expressions work for any

general three-wave mixing scenario involving a χ(2) process. Using the parameters

in Table 1, but switching the powers measured over a small area for the waves

traveling with frequencies ω1 and ω3, we arrive at a general difference frequency case

with P1 = 20 kW and P3 = 100 MW. Using the exact same analytical expressions

obtained from the HAM, the case corresponding to the seeded generation of light

at a frequency corresponding to the difference in frequency of two other light waves

is plotted along with the numerical results in Fig. 4. Again, low-order truncations

for h = −1 well approximate the phenomenon beyond the inflection point. When

h = −1, both the 12th and 18th order approximations capture the frequency mixing

behavior to nearly the first extremum for x > 0.

6. Conclusion

Truncated HAM approximations of three-wave mixing have been determined un-

der the scalar field and slow-varying amplitude approximations. The HAM results

using a power basis were compared to numerical approximations, where we observe

good agreement to numerical results beyond the first inflection point in all cases.

The convergence region was shown to increase with an increase in the auxiliary

parameter, which decreased the variance measured between x = 0 and the first ex-
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Fig. 3. Using the parameters in Table 1, the normalized intensities for frequencies (a) ω1, (b)
ω2, and (c) ω3 are plotted for the perfectly phased matched case with n1 = n2 = n3 = 1.78.
The 10th order HAM approximation is shown for different values of the auxiliary parameter and
compared to the numerical results. (d) The variance between the 10th order HAM approximation
and numerical results in the range between x = 0 and the first local minimum as a function of the
auxiliary parameter.

tremum for x > 0. The variance began to increase dramatically when the auxiliary

parameter was increased above −1/2.

Analytical expressions allow for symbolic manipulation to determine limits, sym-

metries, etc. The HAM approximation to nonlinear optical phenomena could be a

valuable tool to generate analytical approximations for many types of higher-order

nonlinear optical phenomena, where generalized higher-order equations have not

been solved analytically. HAM expressions can be generated that contain only com-

mon functions which are easy to manipulate. We have demonstrated the ability of

HAM to generate analytical expressions that approximate complicated nonlinear

optical behavior, where study of the method applied to more complex scenarios

could provide valuable new insights into a broader class of observable phenomena.

Appendix A. Phase mismatched HAM terms

The HAM terms for the general phase mismatched case under the slow-varying

approximation for three-wave mixing is shown out to q = 3. The initial guesses are
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Fig. 4. The normalized intensities for frequencies (a) ω1, (b) ω2, and (c) ω3 are plotted for the
perfectly phased matched case with n1 = n2 = n3 = 1.78. The HAM approximation out to 18th
order for h = −1 is compared to results from an explicit finite-difference scheme. The parameters
are close to those given in Table 1, except that the field magnitudes |a1| and |a3| have been
swapped which corresponds to the case of difference frequency generation at small x.

given by the left boundary conditions for right-traveling waves,

e10 = a1 , (A.1)

e20 = a2 , (A.2)

e30 = a3 . (A.3)

The first-order HAM deformations follow as

e11 = 2h
deffω1a

∗
2a3

n1c∆k

(
1− ej∆k x

)
, (A.4)

e21 = 2h
deffω2a

∗
1a3

n2c∆k

(
1− ej∆k x

)
, (A.5)

e31 = 2h
deffω3a1a2

n3c∆k

(
e−j∆k x − 1

)
. (A.6)
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The second-order HAM deformations are given by

e12 =
hdeffω1

c2 (∆k)
2
n1n2n3

{
n2a
∗
2

[
2a3n3c∆k (1 + h)

(
1− ej∆k x

)
(A.7)

+ 4ha1a2deffω3

(
ej∆k x − j∆k x− 1

) ]
+ 4ha1 |a3|2 deffn3ω2

(
1 + j∆k x− ej∆k x

)}
e22 =

hdeffω2

c2 (∆k)
2
n1n2n3

{
n1a
∗
1

[
2a3n3c∆k (1 + h)

(
1− ej∆k x

)
(A.8)

+ 4ha1a2deffω3

(
ej∆k x − j∆k x− 1

) ]
+ 4ha2 |a3|2 deffn3ω1

(
1 + j∆k x− ej∆k x

)}
e32 =

hdeffω3

c2 (∆k)
2
n1n2n3

e−j∆k x
{

2a1a2n1n2c∆k(1 + h)
(
1− ej∆kx

)
(A.9)

+ 4a3deffh
[
1 + ej∆k x (j∆k x− 1)

] (
|a1|2 n1ω2 + |a2|2 n2ω1

)}
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The third-order deformation are given by

e13 =
deffhω1

c3 (∆k)
3
n2

1n2n3

{
8a2a3d

2
effh

2n2ω1ω3

[
ej∆k x (2− jDkx)− 2− j∆k x

]
(a∗2)

2

(A.10)

+ a∗2

[
2c∆k (1 + h)n1n2

(
a3c∆k

(
1− ej∆k x

)
(1 + h)n3 + 4a1a2deffhω3

×
(
ej∆k x − j∆k x− 1

) )
+ 8a3d

2
effh

2ω2

(
2 + j∆k x+ ej∆k x(j∆k x− 2)

)
(a3n3ω1a

∗
3 − 2a1n1ω3a

∗
1)

+ 8a1deffhn1ω2a
∗
3

(
a3c∆k (1 + h)n3

(
1 + j∆k x− ej∆k x

)
− 2ja1a2deff∆k hω3x+ 2ja1a2deffhω3 sin (∆k x)

)]}
,

e23 =
deffhω2

c3 (∆k)
3
n1n2

2n3

{
8a1a3d

2
effh

2n1ω2ω3

[
ej∆k x (2− jDkx)− 2− j∆k x

]
(a∗1)

2

(A.11)

+ a∗1

[
2c∆k (1 + h)n1n2

(
a3c∆k

(
1− ej∆k x

)
(1 + h)n3 + 4a1a2deffhω3

×
(
ej∆k x − j∆k x− 1

) )
+ 8a3d

2
effh

2ω1

(
2 + j∆k x+ ej∆k x(j∆k x− 2)

)
(a3n3ω2a

∗
3 − 2a2n2ω3a

∗
2)

+ 8a2deffhn2ω1a
∗
3

(
a3c∆k (1 + h)n3

(
1 + j∆k x− ej∆k x

)
− 2ja1a2deff∆k hω3x+ 2ja1a2deffhω3 sin (∆k x)

)]}
,

e33 =
deffhω3

c3 (∆k)
3
n1n2n2

3

e−j∆k x

{
− a2

[
2a1c

2 (∆k)
2 (
ej∆k x − 1

)
(1 + h)

2
n1n2n3

(A.12)

+ 2deffh
(

4a∗2n2ω1

(
a3c∆k (1 + h)n3

(
ej∆k x (1− j∆k x)− 1

)
+ a1a2deffhω3

(
2 + j∆k x+ ej∆k x (j∆k x− 2)

) )
+ 4a1deffhω2

(
2 + j∆k x+ ej∆k x (j∆k x− 2)

)
(a1n1ω3a

∗
1 − 2a3n3ω1a

∗
3)
)]

+ 8a3deffhn3ω2a
∗
1

[
a1c∆k (1 + h)n1

(
1 + ej∆k x (j∆k x− 1)

)
+ 2ja3deffe

j∆k xhω1a
∗
2 (∆k x− sin (∆k x))

]}
.
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Appendix B. Perfectly phase matched HAM terms

The HAM terms for the special case of perfect phase matching for three-wave

mixing follows, where the expressions are generated after letting ∆k → 0. The

initial guesses are the same as in Eqs. A.1-A.3. The first-order terms are given by

e11 = − 2j

cn1
a∗2a3deffhω1x , (B.1)

e21 = − 2j

cn2
a∗1a3deffhω2x , (B.2)

e31 = − 2j

cn3
a1a2deffhω3x . (B.3)

The second-order terms are given by

e12 =
2deffhω1x

c2n1n2n3

[
a1 |a3|2 deffhn3ω2x− n2a

∗
2 (ja3c (1 + h)n3 + a1a2deffhω3x)

]
,

(B.4)

e22 =
2deffhω2x

c2n1n2n3

[
a2 |a3|2 deffhn3ω1x− n1a

∗
1 (ja3c (1 + h)n3 + a1a2deffhω3x)

]
,

(B.5)

e32 = −2deffhω3x

c2n1n2n3

[
ja1a2c(1 + h)n1n2 + a3deffhx

(
|a1|2 n1ω2 + |a2|2 n2ω1

) ]
.

(B.6)

The third-order terms are given by

e13 =
2jdeffhω1x

3c3n2
1n2n3

{
2 |a2|2 a∗2a3d

2
effh

2n2ω1ω3x
2 (B.7)

− 2a1a
∗
3deffhn1ω2x (3ja3c (1 + h)n3 + 2a1a2deffhω3x)

− a∗2
[
3c (1 + h)n1n2 (a3c (1 + h)n3 − 2ja1a2deffhω3x)

+ 2a3d
2
effh

2ω2x
2
(
|a3|2 n3ω1 − 2 |a1|2 n1ω3

) ]}
,

e23 =
2jdeffhω2x

3c3n1n2
2n3

{
2 |a1|2 a∗1a3d

2
effh

2n1ω2ω3x
2 (B.8)

− 2a2a
∗
3deffhn2ω1x (3ja3c (1 + h)n3 + 2a1a2deffhω3x)

− a∗1
[
3c (1 + h)n1n2 (a3c (1 + h)n3 − 2ja1a2deffhω3x)

+ 2a3d
2
effh

2ω1x
2
(
|a3|2 n3ω2 − 2 |a2|2 n2ω3

) ]}
,

e33 =
2jdeffhω3x

3c3n1n2n2
3

{
2deffhx

[
a1a2deffhn1ω2ω3x |a1|2 (B.9)

+ a1a2deffhn2ω1ω3x |a2|2 + a3n3

(
ω2a

∗
1 (3ja1c(1 + h)n1 + 2a3deffhω1xa

∗
2)

+ a2ω1 (3jc(1 + h)n2a
∗
2 − 2a1deffhω2xa

∗
3)
)]
− 3a1a2c

2(1 + h)2n1n2n3

}
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The fourth-order terms are given by

e14 =
deffhω1x

96c4n2
1n

2
2n

2
3

{
64d2

effh
2n2ω1ω3x

2
[
a1 |a2|4 deffhn2ω3x (B.10)

+ 2 (a∗2)
2
a3n3 (3ja2c (1 + h)n2 + 2a∗1a3deffhω2x)

]
+ 4a1a

∗
3deffhn3ω2x

[
48c (1 + h)n1n2 (3a3c(1 + h)n3 − 4ja1a2deffhω3x)

+ 16a3d
2
effh

2ω2x
2
(
|a3|2 n3ω1 − 4 |a1|2 n1ω3

) ]
− 2ja∗2n2

[
96c2(1 + h)2n1n2n3 (a3c (1 + h)n3 − 3ja1a2deffhω3x)

+ 64jd2
effh

2ω2x
2
(

2a1 |a1|2 a2deffhn1ω
2
3x

− a3n3

(
5a1a2a

∗
3deffhω1ω3x+ 3jc (1 + h)

(
|a3|2 n3ω1 − 2 |a1|2 n1ω3

)))]}
,

e24 =
deffhω2x

96c4n2
1n

2
2n

2
3

{
64d2

effh
2n1ω2ω3x

2
[
|a1|4 a2deffhn1ω3x (B.11)

+ 2 (a∗2)
2
a3n3 (3ja1c (1 + h)n1 + 2a∗2a3deffhω1x)

]
+ 4a2a

∗
3deffhn3ω1x

[
48c (1 + h)n1n2 (3a3c(1 + h)n3 − 4ja1a2deffhω3x)

+ 16a3d
2
effh

2ω1x
2
(
|a3|2 n3ω2 − 4 |a2|2 n2ω3

) ]
− 2ja∗1n1

[
96c2(1 + h)2n1n2n3 (a3c (1 + h)n3 − 3ja1a2deffhω3x)

+ 64jd2
effh

2ω1x
2
(

2a1a2 |a2|2 deffhn2ω
2
3x

− a3n3

(
5a1a2a

∗
3deffhω2ω3x+ 3jc (1 + h)

(
|a3|2 n3ω2 − 2 |a2|2 n2ω3

)))]}
,

e34 = − 2deffhω3x

3c4n2
1n

2
2n

2
3

{
3ja1a2c

3 (1 + h)
3
n2

1n
2
2n3 (B.12)

− deffhx
[
6ja1 |a1|2 a2cdeffh (1 + h)n2

1n2ω2ω3x+ |a1|4 a3d
2
effh

2n2
1ω

2
2ω3x

2

+ 6ja1a2 |a2|2 cdeffh (1 + h)n1n
2
2ω1ω3x+ |a2|4 a3d

2
effh

2n2
2ω

2
1ω3x

2

− a∗1a3n1ω2

(
9a1c

2 (1 + h)
2
n1n2n3 − 2deffhω1x

(
6ja∗2a3c (1 + h)n2n3

+ 5a1 |a2|2 deffhn2ω3x− 2a1 |a3|2 deffhn3ω2x
))

− a2n2ω1

(
4a1a

∗
3deffhn1ω2x (3ja3c (1 + h)n3 + a1a2deffhω3x)

+ 9a∗2a3c
2(1 + h)2n1n2n3 + 4a∗2a3 |a3|2 d2

effh
2n3ω1ω2x

2
)]}

.
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