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Abstract
The problem of optimally controlling one-dimensional diffusion processes until they enter
a given stopping set is extended to include Markov regime switching. The optimal control
problem is presented by making use of dynamic programming. In the case where theMarkov
chain has two states, the optimal homotopy analysis method (OHAM) is used to obtain an
analytical approximation of the value function, which is compared to the finite difference
approximation with successive updates of the nonlinear and coupling terms. As an example,
the method is applied to controlled population growth with regime switching.
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Linear quadratic Gaussian · Optimal control · Viscosity solution
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1 Introduction

The linear quadratic Gaussian (LQG) homing, optimal control problem was described in
Whittle and Gait (1970) to minimize the cost incurred up to a time τ for the first entry into
a termination set D. Recently, Lefebvre (2014) successfully extended the optimal control
of one-dimensional diffusion processes entering a given stopping set to the case of jump-
diffusion processes.
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In this paper we further extend the problem by allowing the drift and standard deviation
of the controlled process to change based on the state of a Markov chain, which defines
the regime switching terminology. After Hamilton’s seminal work, Hamilton (1989) regime
changes have found applications in biology (Li et al. 2009; Liu and Wang 2010; Luo and
Mao 2007, 2009) and finance (Asmussen 1989; Lu and Li 2005).

Bacterial growth is related to this work and previously discussed by Hieber (2014). As
an example, consider a bacteria whose growth rate follows the regime switching model. If
the temperature is between T1 and T2, the growth rate is described by a Brownian motion
with parameters (μ1, σ1); however, when the temperature rises above T2, the growth rate is
described by (μ2, σ2).

As another example, consider the population growth of cancer cells given by the stochas-
tic Gompertz model, Ferrante et al. (2000) which can be written as a controlled stochastic
process. The size of the tumor depends on both the growth rate and control rate. This pro-
cess can be controlled until the tumor size is decreased below a critical value. The model
parameters μk and σk can be assumed to change, e.g., multiple tissues or drug regiments.

We determine the optimal control for Brownian-like motions with regime switching. We
derive an analytical approximation for the value function of the uncontrolled process that
satisfies a system of nonlinear coupled equations using optimal homotopy analysis method
(OHAM). This analytical method is compared to a successive iteration, finite-difference
approximation.

2 Notation and Problem Formulation

2.1 Notation

Through out this paper we are going to use the following notation:

1. (Ω,F ,P) is a complete probability space; b0 ∈ R
∗;

2. a ∧ b = min(a, b); if i ∈ {1, 2, . . . , n} we denote by ī ∈ {1, 2, . . . , n} such i �= ī;
3. {W(t) : t ∈ [s, T ]} is a one−dimensional standard Brownian motion defined on

(Ω,F ,P) over [s, T ];
4. {α(t) : t ∈ [s, T ]} is a continuous time Markov process on (Ω,F ,P) with finite state

spaceM = {1, 2, 3 . . . m}
-P(α(t + dt) = l | α(t) = k) = qkldt + o(dt) if k �= l

-P(α(t + dt) = l | α(t) = k) = 1 + qkkdt + o(dt) if k = l∑m
j=1 qij = 0;

5. Ft = σ {W(s), α(s) : 0 ≤ s ≤ t} and W(t), α(t) independent;
6. the control u : Q̄s × M → U is an {Ft }t≥s-adapted process on (Ω,F ,P) where

Q̄s = [s, T ] × [a, b], for simplicity, we set u(t) = u(t, x, k);
7. U0(s) = L∞([s, T ]; U) = the space of all bounded, Lebesgue measurable, U -valued

functions on [s, T ]
U(s, x) = {u(.) ∈ U0(s) : x(t) ∈ Q̄s};

8. a function ϕ(., ., .) on Q̄s × M satisfies the polynomial growth condition; if for some
positive constants p and K , we have |ϕ(t, x, k)| ≤ K(1 + |x|p);

9. C1,2(Q̄s) = {Φ(t, x) | Φ(t, x) Φt , Φx, Φxx are continuous on Q̄s};
10. C

1,2
p (Q̄s) = {Φ(t, x) ∈ C1,2(Q̄s) | Φt, Φx, Φxx

satisfy a polynomial growth condition}.
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11. We denoted by

Dm

( ∞∑

k=0

vk(x)pk

)

= 1

m!
∂m

(∑∞
k=0 uk(x)pk

)

∂pm

∣
∣
p=0 = um,

the homotopy derivative, which satisfies the following properties:

Dm

( ∞∑

k=0

vk(x)pk

)

= um, Dm

(

pk
∞∑

k=0

uk(x)pk

)

=
{

um−k if 1 ≤ k ≤ m,

0 if k > m.

2.2 Problem Formulation

We consider a controlled Markov process (X(t), α(t)) defined by the stochastic differential
equation,

dX(t) = μ(α(t))dt + b0u(t)dt + σ(α(t))dW(t), t ∈ [s, T ], (2.1)

X(s) = x ∈ [a, b], α(s) = k. (2.2)

The control u : Q̄s × M → U is an {Ft }t≥s-adapted process on (Ω,F ,P); for simplicity,
we set u(t) = u(t, X(t), α(t)). If Eq. 2.1 with the initial data X(s) = x has a unique
solution X(.), with u(t) = u(t, X(t), α(t)) belonging to U0(t), then we call u an admissible
feedback control for initial conditions (s, x, k) and π = (Ω, {Fs},P, X(s), u(s)). Let

Tk(x) = inf{t ≥ s : X(t) = a, or b | X(s) = x ∈ (a, b), α(s) = k}. (2.3)

denote the stopping time, and set τk(x) = T ∧ Tk(x).
For a given control u ∈ U(s, x), let

C(s, x, u(s), k) =
∫ τk(x)

s

L(t, X(t), u(t), α(t))dt + g(τk(x),X(τk(x)), α(τk(x))) (2.4)

be the cost function, where L : Q̄s × U(s, x) × M → R represents the running cost and
g : Q̄0 × M → R is the terminal cost. Here, the terminal cost is assumed to be a convex
function. Let

J (s, x, u, k) = E

[
C(s, x, u, k) | M(s,X(s))

α(s)

]
(2.5)

be the expected total cost, whereM(s,X(s))
α(s) ≡ {X(s) = x, α(s) = k}.

The goal is to find an optimal control u∗ ∈ U(s, x) that minimizes the total cost

V (s, x, k) = J (s, x, k, u∗) = inf
u(s)∈U(s,x)

E

[
J (s, x, u, k) | M(s,X(s))

α(s)

]
(2.6)

for all (s, x, k) ∈ [0, T ) × [a, b] × M. Note that the terminal and boundary conditions are

V (T , x, k) = g(T , x, k), ∀(x, k) ∈ [a, b] × M (2.7)

and

V (s, a, k) = g(s, a, k), V (s, b, k) = g(s, b, k), ∀(s, k) ∈ [0, T ] × M (2.8)

Throughout the paper, we assume the following:

1. |g(t1, y, j, u) − g(t2, z, l, u)| ≤ k0|y − z|, the terminal cost convex, k0 ∈ R
∗+.

2. We let L(t, x, k, u) = 1
2q0u

2 where q0 is a positive constant. This situation is often
referenced as “LQG homing” (Whittle 1983).
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It is clear that J (s, ., ., .) is convex on Q̄s × M and also V (s, ., .) is convex on [a, b].

3 Dynamic Programming

3.1 Optimal Control

Let V (., ., .) be the value function defined by Eq. 2.6,

V (x, s, k) = inf
u(s), s≤t≤τk(x)

E

[
(J (X(s), α(s), s)) | M(s,X(s))

α(s)

]
(3.1)

Lemma 3.1 The optimality equation for the problem including the plant (2.1), cost function
(2.4), and criterion (3.1) satisfies the Hamilton-Jacobi-Bellman (HJB) equation given by:

0 = inf
u(s)

{
1

2
q0u

2(s) + Au(s)V (s, x, k)

}

(s, x, k) ∈ [0, T ] × [a, b] × M (3.2)

V (T , x, k) = g(T , x, k), ∀(x, k) ∈ [a, b] × M (3.3)

V (s, b, k) = g(s, b, k), ∀(s, k) ∈ [0, T ] × M , (3.4)

and
V (s, a, k) = g(s, a, k), ∀(s, k) ∈ [0, T ] × M , (3.5)

where

Au(s)V (s, x, k) = 1

2
σ 2(k)

∂2V (s, x, k)

∂x2
+ ∂V (s, x, k)

∂s
(3.6)

+[μ(k) + b0u(s)]∂V (s, x, k)

∂x
+

m∑

j=1

qkj [V (s, x, j) − V (s, x, k)]

Proof If we consider the infinitesimal time interval (s, s + dt), V (s, x, k) can be written as

V (s, x, k) = inf
u(s)

E

[ ∫ s+dt

s

1

2
q0u

2(t)dt (3.7)

+
∫ τk(x)

s+dt

1

2
q0u

2(t)dt + g(τk(x),X(τk(x)), α(τk(x))) | M(s,X(s))
α(s)

]

.

where M(s,X(s))
α(s) ≡ {X(s) = x, α(s) = k}. The first summand on the right side simplifies

to E

[∫ s+dt

s
1
2q0u

2(t)dt | M(s,X(s))
α(s)

]
= 1

2q0u
2(s)dt . Also,

E

[

E

(

ψτk(x)(s + dt) | M(s,X(s+dt))
α(s+dt) ,M(s,X(s))

α(s) )

)

| M(s,X(s))
α(s)

]

= E
[
ψτk(x)(s + dt) | M(s,X(s))

α(s)

]
,

where ψτk(x)(s + dt) = ∫ τk(x)

s+dt
1
2q0u

2(t)dt + g(τk(x),X(τk(x)), α(τk(x)).
By making use of Bellman’s principle of optimality we obtain:

V (s, x, k) = inf
u(s)

E

[
1

2
q0u

2(s)dt

+ V (s + dt, X(s + dt), α(s + dt)) | M(s,X(s))
α(s)

]

. (3.8)
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By using the following hypothesis

1. Plant equation (2.1)

X(s + dt) = X(s) + [μ(k) + b0u(t)]dt + σ(k)�W(t)

= X(s) + f (W, k, u, t) , (3.9)

where

f (W, k, u, t) = [μ(k) + b0u(t)]dt + σ(k)�W(t) . (3.10)

2. Taylor expansion of

V (s + dt, X(s + dt), α(s + dt)) = V (s,X(s), α(s + dt)) (3.11)

+∂V (s,X(s), α(s + dt))

∂s
dt

+∂V (s,X(s), α(s + dt))

∂x
f (W, k, u, s)

+1

2

∂2V (s,X(s), α(s + dt))

∂x2
f 2(W, k, u, s).

3. linearity of the conditional expectation

E
[
V (s,X(s), α(s + dt) = j) | M(s,X(s))

α(s)

]

=
m∑

j=1
j �=k

V (s,X(s), j)qkj dt + V (s,X(s), k)(1 + qkkdt), (3.12)

E

[
∂V (s,X(s), α(s + dt) = j)

∂s
| M(s,X(s))

α(s)

]

=
m∑

j=1
j �=k

∂V (s,X(s), j)

∂s
qkj dt + ∂V (s,X(s), k)

∂s
(1 + qkkdt), (3.13)

E

[
∂V (s,X(s), α(s + dt) = j)

∂x
| M(s,X(s))

α(s)

]

=
m∑

j=1
j �=k

∂V (s,X(s), j)

∂x
qkj dt + ∂V (s,X(s), k)

∂x
(1 + qkkdt), (3.14)

E

[
∂2V (s,X(s), α(s + dt) = j)

∂x2
| M(s,X(s))

α(s)

]

=
m∑

j=1
j �=k

∂2V (s,X(s), j)

∂x2
qkj dt + ∂V (s,X(s), k)

∂x2
(1 + qkkdt), (3.15)

4. E[W(s + dt)] = 0, E[W 2(s + dt)] = σ 2(k)dt , the independence between α and W .
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we obtain

V (s, x, k) = V (s, x, k) + inf
u(s)

[
1

2
q0u

2(s) + 1

2
σ 2(k)

∂2V (s, x, k)

∂x2

+[μ(k) + b0u(s)]∂V (s, x, k)

∂x
+ ∂V (s, x, k)

∂s

+
m∑

j=1

qkj [V (s, x, j) − V (s, x, k)] + O(dt)

]

dt . (3.16)

3.2 Verification Theorem

The following verification theorem is an adaptation of Theorem 8.1 by Fleming and Soner
(2006) in the LQG with switching case.

Proposition 3.2 (Verification Theorem) Suppose that there exists a function ϕ : Q̄s×M →
R such that: ϕ(., ., l) ∈ C1,2(Q̄s) ∩ C

1,2
p (Q̄s) for each l ∈ M, and ϕ satisfies the HJB

equation, (3.2)–(3.5). Then:

1. For any initial condition (s, x, α(.)) ∈ [0, T )×[a, b]×M, and any admissible feedback
control u(.),

ϕ(s, x, k) ≤ J (s, x, k, u(.)). (3.17)

2. Moreover, if u∗(.) is an admissible feedback control such that

u∗(s) = argmin
u(s)∈U(s,x)

[
Au(s)ϕ(s, x(s), k) + L(s, x(s), k, u)

]
, (3.18)

then

ϕ(s, x, k) = V (s, x, k) = J (t, x, u∗, k) ∀ (t, x, k) ∈ (s, T ) × [a, b] × M, (3.19)

and u∗(.) is an optimal control.

3.3 Uncontrolled System

Differentiating Au(s)ϕ(s, x(s), k) + L(s, x(s), k, u) with respect to u(s) yields the optimal
control u∗(s) of u(s), where

u∗(s) = −b0

q0

∂V (s, x, k)

∂x
. (3.20)

Substituting this value into Eq. 3.2 results in two coupled, second-order, non-linear
equations,

1

2
σ 2(k)

∂2V (s, x, k)

∂x2
− b20

2q0

(
∂V (s, x, k)

∂x

)2

+ μ(k)
∂V (s, x, k)

∂x

+∂V (s, x, k)

∂s
+

m∑

j=1

qkj [V (s, x, j) − V (s, x, k)] = 0 . (3.21)

With Eq. 3.21, we may now approximate the value function for the uncontrolled system via
OHAM (Liao and Zhao 2016). The accuracy of the analytical approximation with respect
to the sum truncation order is compared to a numerical approximation.
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In the sequel we assume s = 0, σ (k) �= 0 and m = 2; we let V (x, k) = Vk(x), we set

Rk = − 1
σ 2(k)

b20
q0

, Sk = 2
σ 2(k)

μ(i), Tk = 2
σ 2(k)

.

4 Computational Algorithm

4.1 Optimal Homotopy Analysis Method OHAM

In order to obtain an analytical approximation to the value function Vi(x) via OHAM, we
first begin with the following equation

Ni[Vi(x)] = Vi(x)′′ + Ri(Vi(x)′)2 + SiVi(x)′

+Tiqiī[Vī(x) − Vi(x)] = 0, (4.1)

subject to the boundary conditions

Vi(a) = αi, Vi(b) = βi, (4.2)

Let rewrite Eq. 4.1 as follow:

Ni[Vi(x)] = Vi(x)′′ + rVi(x)′ + Ri(Vi(x)′)2 + (Si − r)Vi(x)′ + Tiqiī[Vī(x) − Vi(x)]
with an r optimization parameter that will be obtained by minimizing the errors on the
value function. By using the technique of OHAM (Liao and Zhao 2016), we construct the
so-called zeroth-order deformation equation.

(1 − p)Li[Vi(x;p) − vi,0(x)] = p�iHi (x)Ni[Vi(x; p)], (4.3)

where p ∈ [0, 1] is the embedding parameter, �i �= 0 is an auxiliary parameter (convergence
controller), and Li are auxiliary linear operators. The initial guess is Vi(x; 0) = vi,0(x) and
Hi (x) denote the nonzero auxiliary function. We see when p = 0 and p = 1, Vi(x; p) =
vi,0(x) and Vi(x; 1) = Vi(x), which must be one of the solutions to the nonlinear equation
Ni[Vi(x)] = 0, i = 1, 2, as proven by Liao (1995, 2004).

Expanding Vi(x; p) in via a Taylor series with respect to p, one gets

Vi(x; p) = vi,0(x) +
∞∑

m=1

vi,m(x)pm, where vi,m(x) = Dm (Vi(x; p)) . (4.4)

Applying the mth-order homotopy-derivative operator (2.1) to both sides of the zeroth-
order deformation equations (4.3), it is straightforward to obtain the mth-order deformation
equation:

Li[vi,m(x) − χi,mvi,m−1(x)] = �iHi (x)�i,m−1(x), (4.5)

where

�i,m−1(x) = Dm

(
pNi (Vi(x; p))

)

= ∂2vi,m−1(x)

∂x2
+ Ri

m−1∑

j=0

(
∂vi;j (x)

∂x

∂vi;m−1−j (x)

∂x

)

+ Si

∂vi;m−1(x)

∂x

+Tiqiī[vī;m−1(x) − vi;m−1(x)], (4.6)

and

χm =
{
0, m ≤ 1

1, m > 1 .
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Knowing that we have much freedom in choosing our initial guess (Liao 2003), we choose
our initial guess in terms of exponential functions:

vi,0(x) =
1∑

k=0

aike
−krx with ai0 = αi − αi − βi

e−ra − e−rb
e−ra, ai1 = αi − βi

e−ra − e−rb
.

From our initial guess, we can choose a finite base functions and auxiliary function as
follow:

Bn(x) = {e−nrx | n ≥ 0, r > 0}, B̂n(x) = {e−nrx | n ≥ 2, r > 0}
B∗

n(x) = {e−nrx | n = 0, n = 1, r > 0},
Hi (x) = e−2rx (4.7)

Let

V = span{Bn(x)}, V ∗ = span{B∗
n(x)}, V̂ = span{B̂n(x)}.

Now we are going to define explicitly the linear operator and its inverse as follows:

Li : V̂ −→ V̂

φ �→ Li (φ) = d2φ

dx2
+ r

dφ

dx

L −1
i : V̂ −→ V̂

e−nrx �→ L −1
i (e−nrx) = e−nrx

r2(n2 − n)

Remark 4.1 The method of directly defining inverse mapping (MDDiM) (Liao and Zhao
2016) we can define the inverse mapping L −1

i , without calculating any inverse operators
i.e Li does not need to be specified.

Since limn→+∞ e−rnx , the base solution Bn(x) is finite.

The following proposition is an adaptation of the convergence-theorem (Liao and Zhao
2016) in the case of a nonlinear coupled differential system.

Proposition 4.2 If the convergence-control parameters �i , r are properly chosen so that
the series

Vi(x) = vi,0(x) +
∞∑

k=1

vi,k(x), i = 1, 2, (4.8)

is absolutely convergent, then it must be a solution of the original equation (4.1–4.2).

The parameter r can be determined by minimizing Ni (Vi(x, r)).
Let V̄i (x, r) = ∑3

k=0 vik(x, r); if Ni[V̄i (x, r)] = 0, then V̄i (x, r) is the exact solution.
If Ni[V̄i (x, r)] �= 0, then there are residual error functions that can be evaluated at any
point x in the domain of the problem. Taking the affine combination square of the L2-norm
of error functions

E (x, r) =
∫ b

a

2∑

i=1

{Ni[V̄i (x, r)]}2 dx,

we obtain
r̄ = argmin

r
E (x, r)
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4.2 Finite difference Method for the Uncontrolled Equation

The differential-difference equation, Eq. 3.21, in the interval [a, b] is discretized. We let
h = b−a

N+1 , xi = x0 + ih, i = 0, 1, 2, . . . , N + 1, x0 = a, and xN+1 = b. We use the central
difference approximation for the second-order derivative,

σ 2 (j)

2

d2Vj

dx2
≈ σ 2 (j)

2

Vj,i+1 − 2Vj,i + Vj,i−1

h2
, (4.9)

where j = 1, 2 denotes the regime. The first-order derivative in the advection-like term is
evaluated using the first-order upwind scheme criterion,

μ (j)
dVj

dx
≈ Θ (μ (j))

(
Vj,i − Vj,i−1

h

)

+ Θ (−μ (j))

(
Vj,i+1 − Vj,i

h

)

, (4.10)

where Θ is the Heaviside step function. The first-order derivative that is squared is
approximated with a central difference,

b20

2q0

(
dVj

dx

)2

= b20

8q0h2
(
Vj,i+1 − Vj,i−1

)2 . (4.11)

The discretization of Eq. 3.21 follows as

σ 2 (j)

2

Vj,i+1 − 2Vj,i + Vj,i−1

h2
− b20

8q0h2
(
Vj,i+1 − Vj,i−1

)2

+Θ (μ (j))

(
Vj,i − Vj,i−1

h

)

+ Θ (−μ (j))

(
Vj,i+1 − Vj,i

h

)

+
2∑

l=1

qjl

(
Vl,i − Vj,i

) = 0 . (4.12)

By letting Vj,0 = αj and Vj,N+1 = βj , we obtain the following matrix equation,

A(j)V (j) = F (j) . (4.13)

with

A(j) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d(j) e(j) 0 . . . . . . . . . . . . 0
c(j) d(j) e(j) 0 . . . . . . . . . 0
0 c(j) d(j) e(j) 0 . . . . . . 0
... 0

. . .
. . .

. . . 0 . . . 0
...

... 0
. . .

. . .
. . . 0 0

...
...

... 0
. . .

. . .
. . . 0

...
...

...
... 0

. . .
. . . e(j)

0 0 0 0 0 0 c(j) d(j)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The coefficients of the tridiagonal matrix are

c(j) = σ 2(j)

2h2
+ μ (j)

h
Θ (−μ (j)) , (4.14)

d(j) = μ (j)

h
Θ (μ (j)) − σ 2(j)

h2
− μ (j)

h
Θ (−μ (j)) , (4.15)

e(j) = σ 2(j)

2h2
− μ (j)

h
Θ (μ (j)) . (4.16)
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The F vector is given by
F (j) = (Fj,1, . . . , Fj,N )T

Fj,i = b20

8q0h2
(
Vj,i+1 − Vj,i−1

)2 −
2∑

l=1

qjl

(
Vl,i − Vj,i

) − Hji (4.17)

where

Hji =

⎧
⎪⎨

⎪⎩

c (j) αj if i = 1

e (j) βj if i = N

0 elsewhere.

V (j) = (Vj,1, . . . , Vj,N )T are obtained iteratively. Taking an initial approximation

V (0)(j) = (V
(0)
j,1 , . . . , V

(0)
j,N )T , we solve

V (j)(k+1) = A−1(j)F (k)(j).

for k = 1, 2, 3, . . . until the difference between the kth and (k − 1)th vectors is negligible.
The numerical approximation was computed using Python with NumPy. The Heaviside step
function was defined from the SymPy library.

Remark 4.3 We can discretize the uncontrolled system and use the finite-difference method
to get both the value function and optimal control (Wang and Forsyth 2008). In this paper we
focus on the uncontrolled system with the LQG control defined with respect to the uncon-
trolled value fuction. Thus, were are also able to get an approximate analytical expression
via OHAM to compare with the numerical results.

5 Extending an Application to Include Regime Switching

The Gompertz law is known to describe the growth of tumors in patients (Bassukas 1994).
The size of a tumor, x(t), is modeled as

dx

dt
= A1x + A2 x ln x, (5.1)

where A1 is the tumor’s growth rate and A2 is the control rate. If the growth rate varies over
time, θ(t) = A1 + σε(t), with A1 being the constant mean value, θ(t), σ > 0 being the
diffusion coefficient, and ε(t) being a normal distributed white noise, then

dx = {A1x + A2x ln x}dt + σx dWt . (5.2)

The standard Wiener process is denoted by dWt in Eq. 5.2. The exponent, ψ = −ln x,
follows the Ornstein-Uhlenbeck process as a consequence of Eq. 5.1,

dψ =
{(

1

2
σ 2 − A1

)

+ A2ψ

}

dt + σdWt . (5.3)

Let us assume that σ(k) depends on some state of the Markov chain; then, we may
transform (5.3) into a controlled process by setting

u(t) = A2(k)

b0
ψ(t) (5.4)

and

μ(k) = 1

2
σ 2(k) − A1(k), (5.5)
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Fig. 1 a The value function for both regimes for the parameters �1 = �2 = −1, q0 = 1, q12 = q21 = 0.2,
b0 = 1, σ(1) = 1.5, σ(2) = 1.1, μ(1) = 0.4, μ(2) = −0.8, and third-order optimized r = 0.322943.
The third-order perturbation from OHAM (solid black line) shows a trending convergence to the numerical
approximation (thick gray line) relative to the initial guess (dash-dot line). Approximations with odd-ordered
truncations appear to be closer with the same optimization parameter r relative to even ordered truncations
using the odd-ordered optimization parameter. The optimum control determined from the value function is
shown in (b) and (c)

where u(t) is the control drug concentration at time t . We substitute (5.4) and (5.5) into
(5.3) to get

dψ(t) = μ(k)dt + b0u(t)dt + σ(k)dWt , ψ(t0) = ψ0. (5.6)

According to Section 3.3, we found the minimal value of the control drug given by

u∗ = −b0

q0

∂V (ψ, k)

∂ψ

and V (ψ, k) is approximately equal to V (ψ, k).
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Fig. 2 a The value function for both regimes for the parameters �1 = �2 = −1, q0 = 1, q12 = 0.3, q21 = 0.2,
b0 = 1, σ(1) = 1.8, σ(2) = 1.3, μ(1) = 0.4, μ(2) = −0.8, and third-order optimized r = 0.275079. The
optimum control determined from the value function is shown in (b) and (c)
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Suppose the controlled cancer growth can be modeled using some generic parameters.
The boundaries are given by Vi (a) = αi and Vi (b) = βi , where we have set a = 1 and
a relatively long-time boundary b = 5. Figure 1 shows the value function for first initial
guess and following three iterations in the OHAM approximation. The converged succes-
sive iteration approximation using finite differences is also shown in Fig. 1. The value
function approximations from higher-order OHAM perturbations begin to converge towards
the numerical approximation. Figure 1b and c are the optimal control values calculated
using (3.20). The numerical solution is very precise. There is a large difference between u∗

j

from low-order OHAM approximations with the third-order optimized r and the numerical
solutions; however, we see a definite improvement in the OHAM approximation for approx-
imations truncated to first- and third-order. The numerical and OHAM approximations to a
second set of generic parameters is shown in Fig. 2.

6 Conclusion

We have extended the results proved by Whittle (1983) and Lefebvre (2014) to the case of
a one-dimensional Markov regime switching model. For simplicity, we focused on the case
where the underlying Markov chain has two states. We showed approximate solutions to
the Gompertz law via an analytical expression using OHAM as well as a successive iter-
ation method based on finite differences. An initial guess of a function constructed from
exponentials was used in the OHAM approach, which only required a single optimization
parameter for the arbitrarily gained inverse linear operator. The results of this paper com-
bined with the OHAM and/or successive iteration method can be followed to solve many
more problems in mathematics and sciences (Dawson and Kounta 2019).

The very nature of a linear quadratic Gaussian allows us to determine the control from
the value function determined by the uncontrolled problem. The presented method can be
directly applied to population growth of bacteria or tumor growth with parameters rooted
in environmental factors that include regime switching. This method can possibly be fur-
ther extended to include a Markov chain with more than two states as well as extending the
results to include jump-diffusion processes. The resultant analytical expressions obtained
from OHAM can approximate the value function for systems described by regime switch-
ing stochastic equations, although higher-order expression may be needed for increased
precision for large domains. Complicated nonlinear functions will likely result in lengthy
expressions that require computer algebra programs to solve and store the expressions.

Acknowledgements MK would like to thank the University of The Bahamas Internal Grants programme
for Research, Creative and Artistic Proposals for supporting this research project. NJD would like to thank
the Hawaii Pacific University, College of Natural and Computational Sciences, Scholarly Endeavors Program
for supporting this research project.

Appendix A: Proof of Proposition 4.2

Proof

L [vi,m(x)] = L
{
χi,mvi,m−1(x) + �iL

−1
i

[
e−2rx�i,m−1(x)

]
+ cm

i0 + cm
i1e

−rx
}

= χi,mLi[vi,m−1(x)] + �ie
−2rx�i,m−1(x) (1)
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Because L ◦ L −1(x) = x, ∀x ∈ V̂ and L (x) = 0, ∀x ∈ V ∗, (1) implies

m∑

j=1

(L [vi,j (x)] − L
[
vi,j−1(x)

]
) =

m∑

j=1

(
�ie

−2rx�i,j−1(x)
)

⇒ L [vi,m(x)] = L [vi,0(x)] +
m∑

j=1

(
�ie

−2rx�i,j−1(x)
)

Because L [vi,0(x)] = 0, we obtain

lim
m→∞ Li (vi,m(x)) = �ie

−2rx
∞∑

j=0

�i,j (vi,j (x))

Also, Eq. 4.8 is absolutely convergent, and therefore

lim
m→∞ vi,m(x) = 0 .

Then

�ie
−2rx

∞∑

j=0

�i,j (x)) = lim
m→∞ Li (vi,m(x)) = Li ( lim

m→∞ vi,m(x)) = Li (0) = 0

Because �i �= 0 and e−2rx �= 0, it follows that

∞∑

j=0

�i,j (x) = 0 .

Also note that the Taylor series of

Ni

⎡

⎣
∞∑

j=0

vij (x)pj

⎤

⎦ =
∞∑

j=0

�i,j (x)pj ,

at p = 1

Ni

⎡

⎣
∞∑

j=0

vij (x)

⎤

⎦ =
∞∑

j=0

�i,j (x) = 0 .

Appendix B: Recursive Calculation of the Value Function Via OHAM

By using Eq. 4.5, we obtain

vi,m(x) = χi,mvi,m−1(x) + �iL
−1
i

[
e−2rx�i,m−1(x)

]
+ cm

i0 + cm
i1e

−rx ,

where Li (c
m
i0 + cm

i1e
−rx) = 0 and cm

i0, cm
i1 are constants of integration, which will be

determined from the boundary conditions. By making use of Eq. 4.6, we obtain

�i,0(x) = Rir
2a2i1e

−2rx + [ai1r
2 − Siai1r + Tiqiī (aīi − ai1)]e−rx + Tiqiī (aī0 − ai0)
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and

vi,1(x) = �iRia
2
i1

e−4rx

12
+ �i[ai1r

2 − Siai1r + Tiqiī (aīi − ai1)]e
−3rx

6r2

+ �iTiqiī (aī0 − ai0)
e−2rx

2r2
+ c1i0 + c1i1e

−rx

By letting,

αi4 = �iRia
2
i1

12
, αi3 = �i[ai1 − Siai1 + Tiqiī (aīi − ai1)]

6r2
, αi2 = �iTiqiī (aī0 − ai0)

2r2
,

we obtain

vi1(x) =
4∑

k=2

αike
−krx + c1i0 + c1i1e

−rx

with

c1i1 =
∑4

k=2 αike
−kra − ∑4

k=2 αike
−krb

e−rb − e−ra
, c1i0 = −

4∑

k=2

αike
−kra − c1i1e

−ra

The second iteration follows as

�i,1(x) = 8r2Riai1αi4e
−5rx +

[
16r2αi4+6Rir

2ai1αi3−4Sirαi4+Tiqiī (αī4 − αi4)
]
e−4rx

+
[
9αi3r

2 + 4Rir
2ai1αi2 − 3Sirαi3 + Tiqiī (αī3 − αi3)

]
e−3rx

+
[
4r2αi2 + 2Rir

2ai1c
1
i1 − 2Sirαi2 + Tiqiī (αī2 − αi2)

]
e−2rx

+
[
c1i1r

2 − Sirc
1
i1 + Tiqiī (c

1
ī1

− c1i1)
]
e−rx + Tiqiī (c

1
ī0

− c1i0) ,

which, in turn, gives

vi,2(x) = vi,1(x) + 8�iRiai1αi4
e−7rx

42

+�i

[
16r2αi4 + 6Rir

2ai1αi3 − 4Sirαi4 + Tiqiī (αī4 − αi4)
] e−6rx

30r2

+�i

[
9αi3r

2 + 4Rir
2ai1αi2 − 3Sirαi3 + Tiqiī (αī3 − αi3)

] e−5rx

20r2

+�i

[
4r2αi2 + 2Rir

2ai1c
1
i1 − 2Sirαi2 + Tiqiī (αī2 − αi2)

] e−4rx

12r2

+�i

[
c1i1r

2 − Sirc
1
i1 + Tiqiī

(
c1
ī1

− c1i1

)] e−3rx

6r2
+ �iTiqiī (c

1
ī0

− c1i0)
e−2rx

2r2

+c2i0 + c2i1e
−rx .
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By letting,

βi7 = 8�iRiai1αi4

42
, βi6 = �i

[
16r2αi4 + 6Rir

2ai1αi3 − 4Sirαi4 + Tiqiī (αī4 − αi4)
]

30r2
,

βi5 = �i

[
9αi3r

2 + 4Rir
2ai1αi2 − 3Sirαi3 + Tiqiī (αī3 − αi3)

]

20r2

βi4 = �i

[
4r2αi2 + 2Rir

2ai1c
1
i1 − 2Sirαi2 + Tiqiī (αī2 − αi2)

]

12r2
+ αi4

βi3 =
�i

[
c1i1r

2 − Sirc
1
i1 + Tiqiī (c

1
ī1

− c1i1)
]

6r2
+ αi3, βi2 = �iTiqiī (c

1
ī0

− c1i0)

2r2
+ αi2,

we obtain

vi,2(x) =
7∑

k=2

βike
−krx + c1i0 + c1i1e

−rx + c2i0 + c2i1e
−rx,

with

c2i1 =
∑7

k=2 βike
−kra − ∑7

k=2 βike
−krb

e−rb − e−ra
− c1i1,

c2i0 = −
7∑

k=2

βike
−kra − c2i1e

−ra − c1i0 − c1i1e
−ra .

The third iteration follows as

�i,2(x) = 49r2Riβ
2
i7e

−14rx + 84r2βi6βi7Rie
−13rx + (70βi5βi7 + 36β2

i6)Rir
2e−12rx

+(56βi4βi7+60βi6βi5)r
2Rie

−11rx +(42βi3βi7+48βi4βi6 + 25β2
i5)r

2Rie
−10rx

+(28βi2βi7+36βi3βi6+40βi4βi5))r
2Rie

−9rx +[(14βi7(c
2
i1 + c1i1) + 24βi2βi6

+30βi5βi3 + 16β2
i4) + 14ai1βi7]r2Rie

−8rx

+[(12(c1i1 + c2i1)βi6 + 20βi5βi2 + 24βi3βi4 + 12ai1βi6)r
2Ri + 49r2βi7

−7Sirβi7 + Tiqiī (βī7 − βi7)]e−7rx

+[(10(c1i1 + c2i1)βi5 + 16βi4βi2 + 9β2
i3 + 10ai1βi5)r

2Ri + 36r2βi6 − 6Sirβi6

+Tiqiī (βī6 − βi6)]e−6rx

+[(8(c1i1 + c2i1)βi4 + 12βi3βi2 + 8ai1βi4)r
2Ri + 25r2βi5 − 5Sirβi5

+Tiqiī (βī5 − βi5)]e−5rx

+[(6(c1i1 + c2i1)βi3 + 4β2
i2 + 6ai1βi3)r

2Ri + 16r2βi4 − 4Sirβi4

+Tiqiī (βī4 − βi4)]e−4rx

+[(4(c1i1 + c2i1)βi2 + 8ai1βi2 + 4ai1βi2)r
2Ri + 9βi3r

2 − 3Sirβi3

+Tiqiī (βī3 − βi3‘)]e−3rx

+[((c1i1 + c2i1) + 2ai1(c
1
i1 + c2i1)r

2Ri + 4βi2r
2 − 2Sirβi2

+Tiqiī (βī2 − βi2‘)]e−2rx

+[(c1i1 + c2i1)(r
2 − Sir) + Tiqiī[(c1ī1 + c2

ī1
) − (c1i1 + c2i1))]e−rx

+Tiqiī[(c1ī0 + c2
ī0

) − (c1i0 + c2i0))],
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which, in turn, gives

vi,3(x) = vi,2(x) + �i49Riβ
2
i7

e−16rx

240
+ 84�iβi6βi7Ri

e−15rx

210

+�i (70βi5βi7 + 36β2
i6)Ri

e−14rx

182

+�i (56βi4βi7 + 60βi6βi5)Ri

e−13rx

156

+�i

(
42βi3βi7 + 48βi4βi6 + 25β2

i5

)
Ri

e−12rx

132

+(28βi2βi7 + 36βi3βi6 + 40βi4βi5))Ri

e−11rx

110

+�i[(14βi7(c
2
i1 + c1i1) + 24βi2βi6 + 30βi5βi3 + 16β2

i4) + 14ai1βi7]Ri

e−10rx

90
+�i[(12(c1i1 + c2i1)βi6 + 20βi5βi2 + 24βi3βi4 + 12ai1βi6)r

2Ri + 49r2βi7

−7Sirβi7 + Tiqiī (βī7 − βi7)]e
−9rx

72r2

+�i[(10(c1i1 + c2i1)βi5 + 16βi4βi2 + 9β2
i3 + 10ai1βi5)r

2Ri + 36r2βi6

−6Sirβi6 + Tiqiī (βī6 − βi6)]e
−8rx

56r2

+�i[(8(c1i1 + c2i1)βi4 + 12βi3βi2 + 8ai1βi4)r
2Ri + 25r2βi5 − 5Sirβi5

+Tiqiī (βī5 − βi5)]e
−7rx

42r2

+�i[(6(c1i1 + c2i1)βi3 + 4β2
i2 + 6ai1βi3)r

2Ri + 16r2βi4 − 4Sirβi4

+Tiqiī (βī4 − βi4)]e
−6rx

30r2

+�i[(4(c1i1 + c2i1)βi2 + 8ai1βi2 + 4ai1βi2)r
2Ri + 9βi3r

2 − 3Sirβi3

+Tiqiī (βī3 − βi3‘)]e
−5rx

10r2

+�i[((c1i1 + c2i1) + 2ai1(c
1
i1 + c2i1)r

2Ri + 4βi2r
2 − 2Sirβi2

+Tiqiī (βī2 − βi2‘)]e
−4rx

12r2

+�i[(c1i1 + c2i1)(r
2 − Sir) + Tiqiī[(c1ī1 + c2

ī1
) − (c1i1 + c2i1))]

e−3rx

6r2

+�iTiqiī[(c1ī0 + c2
ī0

) − (c1i0 + c2i0))]
e−2rx

2r2
+ c3i0 + c3i1e

−rx

By letting,

γi16 = �i49Riβ
2
i7

240
, γi15 = 84�iβi6βi7Ri

210
, γi14 = �i (70βi5βi7 + 36β2

i6)Ri

182

γi13 = �i (56βi4βi7 + 60βi6βi5)Ri

156
, γi12 = �i (42βi3βi7 + 48βi4βi6 + 25β2

i5)Ri

132
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γi11 = (28βi2βi7 + 36βi3βi6 + 40βi4βi5))Ri

110
,

γi10 = �i [(14βi7(c
2
i1 + c1i1) + 24βi2βi6 + 30βi5βi3 + 16β2

i4) + 14ai1βi7]Ri

90

γi9 = �i [(12(c1i1+c2i1)βi6+20βi5βi2+24βi3βi4+12ai1βi6)r
2Ri +49r2βi7−7Sirβi7+Tiqiī (βī7−βi7)]

72r2

γi8 = �i [(10(c1i1+c2i1)βi5+16βi4βi2+9β2
i3+10ai1βi5)r

2Ri +36r2βi6 − 6Sirβi6 + Tiqiī (βī6 − βi6)]
56r2

γi7 = �i [(8(c1i1 + c2i1)βi4 + 12βi3βi2 + 8ai1βi4)r
2Ri + 25r2βi5 − 5Sirβi5 + Tiqiī (βī5 − βi5)]

42r2
+ βi7

γi6 = �i [(6(c1i1 + c2i1)βi3 + 4β2
i2 + 6ai1βi3)r

2Ri + 16r2βi4 − 4Sirβi4 + Tiqiī (βī4 − βi4)]
30r2

+ βi6

γi5 = �i [(4(c1i1 + c2i1)βi2 + 8ai1βi2 + 4ai1βi2)r
2Ri + 9βi3r

2 − 3Sirβi3 + Tiqiī (βī3 − βi3‘)]
10r2

+ βi5

γi4 = �i [((c1i1 + c2i1) + 2ai1(c
1
i1 + c2i1)r

2Ri + 4βi2r
2 − 2Sirβi2 + Tiqiī (βī2 − βi2‘)]

12r2
+ βi4

γi3 = �i [(c1i1 + c2i1)(r
2 − Sir) + Tiqiī [(c1ī1 + c2

ī1
) − (c1i1 + c2i1))]

6r2
+ βi3,

γi2 = �iTiqiī [(c1ī0 + c2
ī0

) − (c1i0 + c2i0))]
2r2

+ βi2,

we obtain

vi,3(x) =
16∑

k=2

γike
−krx + c1i0 + c1i1e

−rx + c2i0 + c2i1e
−rx + c3i0 + c3i1e

−rx,

with

c3i1 =
(∑16

k=2 γike
−krb−c1i0−c1i1e

−rb−c2i0−c2i1e
−rb

)
−

(∑16
k=2 γike

−kra − c1i0−c1i1e
−ra −c2i0−c2i1e

−ra
)

e−ra − e−rb

c3i0 = −
16∑

k=2

γike
−kra − c1i0 − c1i1e

−ra − c2i0 − c2i1e
−ra − c3i1e

−ra .

An approximate analytical solution truncated to second order would follow as

V̄i (x) ≈ vi,0(x) + vi,1(x) + vi,2(x) + vi,3(x) . . . i = 1, 2.
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