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Coherent perfect rotation
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Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished
by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect
rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal
polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and
reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence
in perfect mode conversion and thus informs the optimization of active multiport optical devices.
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We use the term coherent perfect rotation (CPR) to denote
the linear, conservative, reversible transfer of any fixed input
polarization state of coherent counterpropagating light fields
completely into its orthogonal polarization. There are (many)
single-port methods for completely rotating the light into its
orthogonal polarization state, but their activity does not depend
on, and so cannot be controlled by, the phase of the light field
as in an intrinsically two-port process such as CPR. Perhaps
somewhat surprisingly, and of utility for general applications
involving any type of coherent perfect mode conversion, below
we explicitly show that CPR is possible only if the underlying
conversion process has the correct fundamental symmetry,
namely, it (or, if of mixed symmetry, some part of it) must
be odd under time reversal.

The name “coherent perfect rotation” comes from the
significant formal phenomenological parallels of this process
to coherent perfect absorption (CPA) [1,2], the so-called
“antilaser” state that has attracted significant interest recently.
CPA in one spatial dimension refers to the (reflectionless
and thus complete) absorption of phased counterpropagating
waves incident on a medium. As a linear process, CPA is
possible only as a nonconservative process, and is modeled in
Refs. [1,2] using a non-Hermitian Hamiltonian. In its original
formulation, this non-Hermitian Hamiltonian included either
absorption or gain and thus explicitly breaks the time-reversal
invariance of the underlying fundamental processes. Recall
that CPA is strikingly distinct from critical coupling, in which
the absorption and coupling in a device are tuned to cause
reflectionless absorption. Although both are linear, in the
case of critical coupling there may be multiple ports but the
reflectionless process is incoherent in each port, that is, it
is not a coherent process depending on the phase at each
port. In analogy with critical coupling, CPA occurs only
for isolated values of the absorption index and the optical
length. CPA phenomena have been illustratively generalized in
PT -invariant systems [3,4], leading to a fertile way to explore
many subtleties in optical processes [5,6].

CPR differs fundamentally from CPA in that it is a conserva-
tive, reversible process that can be understood simply in terms
of an explicitly Hermitian Hamiltonian. One consequence
is that the CPR resonances often appear as spectroscopic
doublets having the same spatial symmetry. In the analogous
system with CPA, the resonances appear as singlets. There are,
however, many important phenomenological correspondences

between CPR and CPA and likely any coherent perfect process.
These include the necessity of an underlying T -odd process,
the occurence of the phenomenon at isolated values of control
parameters representing the strength of that process, and the
fact that these isolated values are significantly below those
for which the associated system is critically coupled. After
developing the theory of CPR and its consequences we propose
an experimental demonstration of CPR and briefly discuss
applications it may afford.

We adopt a 4 × 4 transfer matrix approach to describe linear
optical transport of a monochromatic ray moving back and
forth along the ẑ axis,

M =
(

M C

B M ′

)
with �vi+1 = Mi �vi, (1)

where the M’s, B, and C are 2 × 2 (in general complex)
matrices; here we are working in the basis where the local field
(complex) amplitudes are �v = (Ex,Hy,Ey, −Hx). The more
familiar single-polarization form of the transport is in terms
of the 2 × 2 M matrix (take B = C = 0). We work in units in
which the familiar propagation eigenstates of a single polar-
ization in the vacuum are �eR = (Ex,Hy) = (1,1) for a right-
moving wave and �eL = (−1,1) for a left-moving wave. Thus,
for review, we represent the coherent scattering from a linear
material whose (2 × 2) transfer matrix is M by �ein = (1,1) +
r(−1,1) as the incident fields from the left and �eout = t(1,1) =
M�ein for the fields on the right, with r and t denoting the re-
flection and transmission amplitudes (generally complex num-
bers). For reference, solving the transport in this basis gives
t = 2(m11m22 − m12m21)/(m11 + m22 − m12 − m21) and r =
(m11 − m22 + m12 − m21)/(m11 + m22 − m12 − m21), where
the mij are the matrix elements of M (note the difference
in basis from Ref. [7]).

In the 2 × 2 case, T symmetry indicates that real diagonal
elements of M are T even whereas real off-diagonal elements
are T odd. In general, matrices C and B in M can each be
written as a sum of T -even and T -odd parts. Thus in the chosen
basis the T -even part is of the form

{C or B}T even =
[

Re Im
Im Re

]
, (2)

where Im (Re) stands for imaginary (real) matrix elements.
Note that these elements can all be different from one another.
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In contrast, for the T -odd part of the B and C matrices,

{C or B}T odd =
[

Im Re
Re Im

]
. (3)

where, again, all entries could be different. Although T -odd
pieces in the 2 × 2 M are associated with absorption or gain
there are combinations of these T -odd matrix elements in C

that conserve the total power of the 4 × 4 system. Materials
without linear birefringence are O(2) symmetric about the
axial direction, implying M = M ′ and B = −C, regardless of
the T symmetry of the matrix elements.

In steady state, the local power flux will be constant for
a conservative system. A local expression for the power flux
in the chosen basis is ∼�v †P �v where P = [ P 0

0 P ] in which for

each polarization P = [ 0 1
1 0 ]. The statement that the transport

is conservative is thus M†PM = P . This leads to important
constraints on the matrix elements of M and B,C. In the
more familiar 2 × 2 formulation of transport for a single
polarization, a conservative system satisfies M†PM = P ,
indicating that m11 and m22 must be purely real, while m12

and m21 must be purely imaginary [det(M) = 1 is automatic
in one-dimensional (1D) linear transport as it preserves the
Ex,Hy commutator], and is T even. For example, for normal
incidence on a purely dielectric material of thickness L and
index n,

M =
[

cos δ i
n

sin δ

in sin δ cos δ

]
, (4)

where δ = nk0L and k0 is the vacuum wave number. Similarly,
in the full 4 × 4 transport, T symmetry and power conservation
are not identical. If we restrict consideration to T -even,
conservative transport in the uniaxial case (M = M ′ and
B = −C) then power conservation gives

m12c21 − m21c12 = m22c11 − m11c22 (5)

along with c21/c12 = m21/m12 and c11/c22 = m11/m22. Com-
bining these equations indicates that cij = χmij with χ

a real constant. Then power conservation indicates (1 +
χ2)M†PM = P for transport with rotation in a simple
dielectric material for which

M = cos γ

[
cos δ i

n
sin δ

in sin δ cos δ

]

and χ = tan γ . Thus only a single parameter, γ , governs the
overall rotation in the T -even case, as would be the case for
optical activity in which γ is proportional to the product of the
concentration of chiral centers and sample length.

Assuming both that the components of M remain T even
and that the system is uniaxial, the case of conservative, T -odd
C power conservation reduces to

detM − detC = 1 (6)

and

m11c22 + m22c11 = m21c12 + m12c21. (7)

Thus, studying the conjugation and scaling symmetry of the
above equations, we see that there are three (real) parameters
that determine the longitudinal T -odd polarization mixing.
One of these parameters is the ordinary Faraday rotation

parameter (the Verdet constant times the applied longitudinal
magnetic field). The other two parameters in a general solution
of Eqs. (6) and (7) are less familiar although they lead to the
same phenomena.

The adjective “coherent” in CPA and CPR indicates their
reliance on the relative phase between the counterpropagating
light fields in achieving perfect mode conversion. Thus CPA
and CPR are necessarily two-port processes, in contrast to
critical coupling [8–10], itself sometimes referred to as one-
port CPA. Having established the formalism and symmetry, we
now show that CPR is possible only using T -odd processes
such as Faraday rotation.

As noted in the original formulation [1], CPA can be
understood via 2 × 2 transfer matrices. In CPA there are
incoming fields only, and in our choice of basis, these are �vl =
(Ex,Hy) = (1,1) and �vr = f (−1,1) (note that f is complex).
These fields are related via the transfer matrix as �vr = M �vl ,
which in terms of the matrix elements of M indicates that CPA
requires the condition m11 + m22 + m12 + m21 = 0. In terms
of a fixed optical element size, this (complex) equation yields
both the wavelength of the CPA pole in the S matrix and the
critical value of the dissipative coupling (which necessarily
has T-odd components in M).

It is straightforward to find the location of a CPR resonance
using the 4 × 4 basis. For fields on the left, take �vl =
(1,1, −l,l) where l is the amplitude of the outgoing rotated
wave. On the right, take �vr = (−d,d,s,s); this configuration
thus consists of only incoming fields of one polarization and
outgoing fields of the orthogonal polarization only, the CPR
state. In analogy with the CPA state, these boundary conditions
lead to a condition on the size, wavelength, and rotary power
of the system. For uniaxial systems with the 4 × 4 form of M
as described earlier, we require

M

(
1
1

)
+ C

(−1
1

)
l =

(−1
1

)
d (8)

and

−C

(
1
1

)
+ M

(−1
1

)
l =

(
1
1

)
s. (9)

No optically active, uniaxial, conservative process ever solves
the above pair, and thus it cannot be used to achieve CPR. For
this case, as indicated in the preliminaries, C ∼ M and thus
M = [ M cos γ −M sin γ

M sin γ M cos γ ], for γ proportional to the concentration-
length product of the chiral centers. Using this form in Eqs.
(8) and (9) and eliminating l, s, and d, we arrive at the single
constraint

−(m11 − m22)2 + (m12 − m21)2 = 4 cos2 γ. (10)

The power conservation discussed earlier indicates that m11

and m22 must be purely real in this basis, such that m12

and m21 are purely imaginary; thus Eq. (10) can never
be achieved unless both sides are identically zero. If so,
then both m11 = m22 and m12 = m21. Thus the condition
det(M) = 1 would imply that there exists some angle φ

such that m11 = cos φ = m22 and m12 = i sin φ = m21. For
φ �= 0, this case would correspond to a material that has a
net index of refraction of unity. Alternatively, plugging the
choice φ = 0 into Eqs. (8) and (9), the equations become
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FIG. 1. CPA and CPR are distinct from each other and the
associated critical coupling and critical rotation [8–10]. For a fixed
value of �, the system’s length in terms of the vacuum wavelength,
critical coupling and CPA occur at a particular value of the absorption
index α. Similarly, rotation is parametrized by the product of
the material’s Verdet and the magnetic-field, V . Only CPA and
CPR depend upon both the amplitude and relative phase of the
counterpropagating beams. Here, for simplicity, the ordered pairs
indicate orthogonal polarizations and the sign indicates the direction
of propagation.

degenerate, relaxing the requirement on the index although
yielding a solution for any inputs (1 or d in any relation,
since M = 1) independently. This is not CPR; it is instead the
rotational analog of critical coupling (Fig. 1). To reiterate, such
a system conservatively rotates the polarization of light from
any given polarization state completely into the orthogonal
state whether it is illuminated from one side or the other,
independent of any phase relationship between the incoming
fields. Indeed, a single slab of an optically active material can
be tuned in width and chiral concentration to create this analog
of critical coupling for rotation. There are likely to be other
ways to achieve this rotational analog of critical coupling,
including one we discuss below, but again, this is not CPR.

The main idea of this Rapid Communication is that CPR is
achievable with T-odd rotation, as we now show analytically
for a slab dielectric Faraday rotator. The M and C in the chosen
basis for a slab are [11]

M = 1

2

[
C1 + C2 i(S1/n1 + S2/n2)

i(n1S1 + n2S2) C1 + C2

]
(11)

and

C = 1

2

[
i(C1 − C2) −(S1/n1 − S2/n2)

−(n1S1 − n2S2) i(C1 − C2)

]
, (12)

where C1,2 (S1,2) refer to the cosine (sine) of δ1,2 = n1,2k0L

in which n1,n2 are the indices of refraction of the left- and
right-circular polarization in the slab, k0 refers to the vacuum
wave vector, and L is the thickness of the slab. For a dielectric
slab in an external magnetic field pointing along the direction
of propagation, δn = n1 − n2 is proportional to the product of
the Verdet constant and the magnetic field. Note that this C

given by Eq. (12) has the requisite symmetry of Eq. (3) and is
conservative.

The system Eqs. (8) and (9) gives four (complex) relations
for three complex quantities (d,s,l), so, being overdetermined,
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FIG. 2. (a) The LHS (black dashed line) and the envelope of the
fast-oscillating RHS (thick gray line) of the CPR condition Eq. (13)
plotted as a function of L/Lc. The inset is a small portion of the
full graph near the first occurence of the CPR resonance and where
the fast oscillations of the RHS are also shown. (b) Total reflected
intensity in the same polarization as the input fields as a function of
the length L multiplied by the vacuum wave number k0. The thin line
corresponds to the case where the counterpropagating fields have the
same relative phase and the thick line to the case where they are 180◦

out of phase. The inset shows a CPR “doublet” at larger k0L at which
the line splitting is more prominent.

demands a condition on n1,2 and k0L which may or may not
be physically satisfiable. Algebra shows this condition to be(

n1 + 1

n1

)
S1C2 −

(
n2 + 1

n2

)
S2C1

= ±
[(

n1 − 1

n1

)
S1 −

(
n2 − 1

n2

)
S2

]
. (13)

Whenever this condition is satisfied, the fields fall into the
parity (p = ±1) eigenstates l = ps and d = p. Again, these
are necessarily two-port resonances, as is CPA, and thus
examples of CPR states. A numerical solution is shown in
Fig. 2 for terbium gallium garnet with n̄ = (n1 + n2)/2 = 1.95
subject to a coherent 632.8 nm light source and δn = 2.7 ×
10−5 produced by a 1 T external field. In Fig. 2(a) the square
of the left-hand side (LHS) of Eq. (13) is plotted as a dashed
line and the (envelope of the) square of the right-hand side
(RHS) as a gray one. The first of many CPR states exists under
these conditions at L/Lc ≈ 0.603, where L is the length of
the slab and Lc is the critical half-wave rotation length. It is
rather easy to understand some general trends in the location
of the CPR resonances in λ. Increasing n̄ = (n1 + n2)/2 or δn

brings the location of the first CPR resonance to lower k0L,
as would be the case in CPA with δn playing the role of α,
the absorption constant. Thus for a fixed L and a given range
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of k0, there is a threshold δn at which CPR states first appear,
again reminiscent of CPA.

Also in Fig. 2(b) is a graph of the total power reflected
with the same polarization as the input fields for this case,
clearly indicating the first CPR resonance near k0L ≈ 70 201,
or L ≈ 7.07 mm. Notably, for this simple slab geometry,
all resonances come in pairs of the same parity and are
part of a parity-alternating series of pairs of resonances. As
in CPA, these CPR resonances are bound-state-like (zero
width). Unlike CPA where there is but one resonance, for
CPR, given n̄, L, and a range of k0, there are many, and
they occur generically in “doublets” with the same spatial
symmetry.

Finally, just as one can reach critical coupling in a one-port
version of CPA, one can see that for particular values of n1, n2,
and k0L there can be a degeneracy of the positive and negative
parity resonances. For Fig. 2, this occurs for k0L ≈ 116 355. At
degeneracy, taking linear combinations of the CPR resonances
yields the (incoherent) critical rotator solutions (in detail they
are at S1 = 0 = S2 and C1 = −C2 = ±1). These are optically
indistinguishable from the critical rotator described earlier that
relied on optical activity.

An experimental verification of CPR is planned using a
high-Verdet-constant glass. The CPR resonances are thin,
indicating that small changes in a substantial magnetic field

(or in the material itself) may be readily detectable through
changes in the extinction of a reflected polarization. At the level
of technological application, note that an optical modulator
based on CPA will necessarily have limited dynamic range as
the material will always absorb some of the light even when
not in CPA. A CPR-based optical modulator may not suffer
the same limitation. This work has also stimulated theoretical
investigations of more general coherent perfect multichannel
conversion processes in nonlinear optics.

In conclusion, we have shown that Faraday rotation has the
appropriate symmetry to manifest coherent perfect rotation
and have analytically developed an example of CPR in a
dielectric Faraday slab rotator. CPR and CPA have important
phenomenological correspondences, but CPR is conservative
and reversible so can be described in terms of a finite-
dimensional manifestly Hermitian Hamiltonian. In light of the
findings above it is likely that any coherent perfect conversion
process requires the fundamental symmetry of the underlying
process to be T odd.
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